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ΔΣ = ∫x
∑
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ΔG = ∫x
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Quark orbital 
angular momentum  
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Quark orbital 
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Complementary measurements required to disentangle
Quark & gluon spin 
• Polarized DIS 
• Sensitive to spin structure function 

 

• Gluon sensitivity from  dependence
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Spin structure extracted from double-spin asymmetries

  and        A∥ =
σ⇆ − σ⇉

σ⇆ + σ⇉
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Spin structure extracted from double-spin asymmetries

  and        A∥ =
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e
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h

Semi-inclusive: combine with fragmentation 
functions to disentangle flavor information 
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Existing constraints on  limited by kinematic 
coverage 

ΔΣ, ΔG

ΔΣ/2 + ΔG + Lq + Lg =
1
2
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ECCE at the EIC

Selected from three proposals 
as EIC project detector 

Based on re-use of BaBaR 
1.4 T solenoid 

Full detector simulations of 
physics events

EIC Comprehensive Chromodynamics Experiment
Collaboration Detector Proposal

A state of the art detector capable of fully exploiting the science potential of the EIC, realized
through the reuse of select instrumentation and infrastructure, to be ready by project CD-4A

December 1, 2021



7

Proton spin measurement studies from ECCE simulation
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Proton spin measurement studies from ECCE simulation

Inclusive double-spin asymmetry 
Ap

1 (x, Q2)

e
e′ 

X

e
e′ 

X

π±, K±

Semi-inclusive double-spin asymmetry  
, Ap,h

1 (x, Q2) h = π±, K±

• Pion rejection/electron purity  

•  reconstruction 

•  reconstruction (SIDIS only)

x, Q2

z

Key detector performance:
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Electron purity
• Estimate  ratio from simulation  

(includes DIS and photoproduction) 

• Apply pion rejection from relevant detectors  
( , RICH, DIRC, TOF) 

• Resulting contamination <2% for  > 2 GeV
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DIS reconstruction (inclusive and semi-inclusive)

• Leverage multiple reconstruction methods to achieve maximum resolution 

• Not shown:  methods, which can improve resolution at low , Σ y Q2

In-bin fraction

xB xB xB

ECCE  18x275 GeVep

Lepton Jacquet-
Blondel

Double-
angle

 (
Ge

V2
)

Q
2
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EIC: Down to 10-4, 1-103 GeV2! 
  

Maximize constraints on gluon spin with 
multiple  settings
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Projected results for semi-inclusive Ap
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Impact of EIC measurements

• Dedicated impact plots for ECCE 
pseudodata in-progress 

• ECCE meets detector 
requirements from Yellow Report 

• Use YR plots to illustrate impact
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What about the neutron?
• Standard (inclusive) approach:  from ,  

• Nuclear corrections introduce model dependence/uncertainties! 

• Possible at EIC with  and  collisions

An
1 Ap

1 A3He
1

ep e3He
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Summary and outlook

• Full detector simulations of ECCE detector benchmarked detector performance 
and physics observables 

• ECCE demonstrated capability to perform variety of inclusive and semi-inclusive 
measurements critical to constraining quark and gluon spin in the nucleon 

• In March 2022, EIC Detector Proposal Advisory Panel recommended ECCE as 
reference design for EIC Detector 1 

• Consolidation of effort underway to form EIC Detector 1 collaboration


