

Giancarlo Panizzo on behalf of the ATLAS Collaboration

Prospects for measurements of the four-top-quark production cross section at the ATLAS experiment at the HL-LHC

2-6 May 2022

Main references

Short title	Journal Reference	\sqrt{s}	L	Links
Extrapolation of ATLAS sensitivity to the measurement of the Standard Model four top quark cross section at the HL-LHC	ATLAS PUB NOTE	14 TeV	up to 3 ab ⁻¹	ATL-PHYS-PUB-2022 -004
Evidence for $t\bar{t}t\bar{t}$ production in the multilepton final state in proton–proton collisions at \sqrt{s} =13 TeV with the ATLAS detector	EPJC	13 TeV	139 fb ⁻¹	<u>Eur. Phys. J. C 80</u> (2020) 1085
Measurement of the $t\bar{t}t\bar{t}$ production cross section in pp collisions at \sqrt{s} = 13 TeV with	JHEP	13 TeV	139 fb ⁻¹	JHEP 11 (2021) 118

(see also previous talks on HL-LHC)

Introduction

The Top quark

- Heaviest known elementary particle:
 - unique quark at the W, Z and Higgs bosons mass scale
 - connection to EW Symmetry Breaking in underlying BSM theories?
 - Yukawa coupling yt ~ 1
 - important role in EW corrections

Top mass as key ingredient in SM vacuum stability

JHEP 12 (2013) 089

Four Tops and High Luminosity

Summary of ATLAS 139 fb⁻¹/ 13 TeV results:

Eur. Phys. J. C 80 (2020) 1085

Four tops SS+multilepton, evidence

Four tops SS+multilepton, evidence

- First Evidence in ATLAS
- High jet and *b*-jet multiplicities
- Single lepton/ opposite sign dileptons
 - larger Branching Fraction (56%)
 - \circ large irr. background (tt+jets)
- Same sign (SS) leptons and multilepton
 - smaller BF (7+5)%
 - lower backgrounds

 $t \bar{t} W, \ t \bar{t} Z,$ non-prompt leptons, charge mis-ID

Analysis strategy

Four tops SS+multilepton, evidence

Region	Channel	N_j	N_b	Other requirements	Fitted variable
SR	2LSS/3L	≥ 6	≥ 2	$H_{\rm T} > 500$	BDT
CR Conv.	$e^{\pm}e^{\pm} e^{\pm}\mu^{\pm}$	$4 \le N_j < 6$	≥ 1	$m_{ee}^{\text{CV}} \in [0, 0.1 \text{ GeV}]$	$m_{ee}^{ m PV}$
				$200 < H_{\rm T} < 500 {\rm GeV}$	
CR HF e	еее ееµ	-	= 1	$100 < H_{\rm T} < 250 {\rm GeV}$	counting
CR HF μ	еµµ µµµ	-	= 1	$100 < H_{\rm T} < 250 \; {\rm GeV}$	counting
CR ttW	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm}$	≥ 4	≥ 2	$m_{ee}^{\text{CV}} \notin [0, 0.1 \text{ GeV}], \eta(e) < 1.5$	$\Sigma p_{\mathrm{T}}^{\ell}$
				for $N_b = 2$, $H_T < 500$ GeV or $N_j < 6$	
				for $N_b \ge 3$, $H_T < 500 \text{ GeV}$	

- Template method for main backgrounds (except Qmis-id)
 - dedicated control/validation regions(especially ttW+jets)
- Simultaneous profile likelihood fit in CR/SR with dedicated discriminating variables

Fit results: CR, pre-fit

Eur. Phys. J. C 80 (2020) 1085

Four tops SS+multilepton, evidence

- 125% on +7 jets
- 300% on +8 jets
- 50% on +3b, ≥4b

- Additional 50% uncertainty to $t\bar{t}\,Z$ and $t\bar{t}\,H$ with 3 and ≥4b jets 100% uncertainty on 3-top cross
 - section and additional 50% on ttt+b

Fit results: CR, post-fit

Four tops SS+multilepton, evidence

• Normalization factors extracted:

Parameter	$\mathrm{NF}_{tar{t}W}$	NF _{Mat. Conv.}	$NF_{Low \ m_{\gamma^*}}$	NF_{HF} e	$\mathrm{NF}_{\mathrm{HF}\mu}$
Value	1.6 ± 0.3	1.6 ± 0.5	0.9 ± 0.4	0.8 ± 0.4	1.0 ± 0.4

Fit results: ttW+jets validation

Four tops SS+multilepton, evidence

- Dedicated ttW validation region
- Difference between events with positive/negative charge sum N₊ - N₋ (suppress all charge symmetric backgrounds)

Very good agreement in EXTREME regions

Fit results: signal region

Four tops SS+multilepton, evidence

- Observed (expected) significance w.r.t. background-only hypothesis
 - 4.3 (2.4) standard deviations
- Measured cross section: 24⁺⁷₋₆fb
 - o consistent within 1.7σ with SM expectation $σ_{at}$ =12.0 ± 2.4 fb
- Combined with 1L/2OSL channel,

4.7 (2.8) standard deviations

Fit results: signal region

Four tops SS+multilepton, evidence

- Observed (expected) significance w.r.t. background-only hypothesis
 - 4.3 (2.4) standard deviations
- Measured cross section: 24⁺⁷₋₆fb
 - o consistent within 1.7 σ with SM expectation σ_{a} =12.0 ± 2.4 fb
- Combined with 1L/2OSL channel,

4.7 (2.8) standard deviations

Fit results: signal region

Four tops SS+multilepton, evidence

- Observed (expected) significance w.r.t. background-only hypothesis
 - **4.3 (2.4)** standard deviations
- Measured cross section: 24⁺⁷₋₆fb
 - o consistent within 1.7 σ with SM expectation σ_{a} =12.0 ± 2.4 fb
- Combined with 1L/2OSL channel,
 - 4.7 (2.8) standard deviations

Systematic uncertainties

Uncertainty source	$\Delta \mu$	
Signal modelling		
$t\bar{t}t\bar{t}$ cross section	+0.56	-0.31
$t\bar{t}t\bar{t}$ modelling	+0.15	-0.09
Background modelling		
$t\bar{t}W$ +jets modelling	+0.26	-0.27
$t\bar{t}t$ modelling	+0.10	-0.07
Non-prompt leptons modelling	+0.05	-0.04
$t\bar{t}H$ +jets modelling	+0.04	-0.01
$t\bar{t}Z$ +jets modelling	+0.02	-0.04
Other background modelling	+0.03	-0.02
Charge misassignment	+0.01	-0.02
Instrumental		
Jet uncertainties	+0.12	-0.08
Jet flavour tagging (light-flavour jets)	+0.11	-0.06
Simulation sample size	+0.06	-0.06
Luminosity	+0.05	-0.03
Jet flavour tagging (b-jets)	+0.04	-0.02
Jet flavour tagging (c-jets)	+0.03	-0.01
Other experimental uncertainties	+0.03	-0.01
Total systematic uncertainty	+0.70	-0.44
Statistical	+0.42	-0.39
Non-prompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})	+0.05	-0.04
$t\bar{t}W$ normalisation	+0.04	-0.04
Total uncertainty	+0.83	-0.60

Prospects @HL-LHC/ 14 TeV:

ATL-PHYS-PUB-2022-004

- Adapt luminosity assumptions (up to 3 ab⁻¹)
- Split into 5 SR to account for increased statistical power, fit H_T (compatible results @Run2)
- Scale cross sections 13 TeV→14 TeV:
 - Signal: 1.3 x
 - tt, ttH, ttW, ttZ: 1.4 x
- Fix backgr. NF to Run2 fitted values

- Run 2 prescriptions + possible reductions:
 - o ttW+≥7j: from NF post-fit uncertainty
- Two syst. uncertainties scenarios:
 - "Run 2" (conservative)
 - "Run 2 Improved"
 - theoretical: halved
 - ttV+jets HF tagging: scale down the nuisance parameters from the current analyses
 - syst. driven by intrinsic detector limitations:
 revised only in presence of detailed
 simulation studies of the upgraded detector

Systematics, summary

		<u> </u>	
Uncertainty source	Treatment in the "Run 2 Improved" mo	del	
Signal modelling			
$t\bar{t}t\bar{t}$ cross section	Half of Run 2		
$t\bar{t}t\bar{t}$ modelling	Half of Run 2		
Background modelling			
$t\bar{t}W$ +jets modelling			
Renormalisation and factorisation scales	Half of Run 2		
Generator	Half of Run 2		
Jets multiplicity modelling	Scaled by Run 2 pulls		
Additional heavy flavour jets	Scaled by luminosity		
$t\bar{t}t \bmod elling$			
Cross section	Half of Run 2	Instrumental	
Additional heavy flavour jets	Scaled by luminosity	Jet uncertainties	Same as Run
Non-prompt leptons modelling	Scaled by luminosity		Half of Run 2
$t\bar{t}H$ +jets and $t\bar{t}Z$ +jets modelling		Jet flavour tagging (light-flavour jets)	Same as Run 2
Cross section	Half of Run 2	Luminosity	Half of Run 2
Renormalisation and factorisation scales	Half of Run 2	Jet flavour tagging (b-jets)	Half of Run 2
Generator	Half of Run 2	Jet flavour tagging (c-jets)	
PDF	Half of Run 2	Other experimental uncertainties	Same as Run 2
Additional heavy flavour jets	Scaled by luminosity		
Other background modelling			
Cross section	Half of Run 2		
Additional heavy flavour jets	Scaled by luminosity		
Charge misassignment	Same as Run 2		
Template fit shape uncertainties			
Mat. Conv., γ^* , and HF non-prompt leptons	Scaled by luminosity		
Other fake leptons	Half of Run 2		
Additional heavy flavour jets	Half of Run 2		

- Expected total uncertainty on the cross section of 14% (20%) for "Run2 Improved" ("Run2")
- Experimental precision is expected to be significantly better than the precision of the current SM prediction
- Expected significance can reach $6.4~\sigma$ under "Improved" systematic assumptions
- improvement in sensitivity of the "Improved" scenario wrt "Run 2"driven by smaller unc:
 - on the *ttt* cross section
 - related to *ttV*+jets with heavy-flavour jets
 - jet flavour tagging.

Summary

- Extrapolation relies on knowledge of ATLAS Run2 measurements of $t\bar{t}t\bar{t}$ in **2SS+multilepton** (and 1L/2OSL) decay channels
- Their combination measures

$$\mu = 2.0 \pm 0.4 (ext{stat})^{+0.7}_{-0.5} (ext{syst}) = 2.0^{+0.8}_{-0.6}$$

with a significance of

$$4.7(2.6)\sigma$$
 Obs. (Exp.)

- **HL-LHC extrapolation** based on 2SS+multilepton channel **alone**
- Two different syst. assumptions:
 - Conservative
 - Run 2 Improved (more optimistic)
 - Expected significance can reach $6.4~\sigma$ under "improved" systematic assumptions at 3 ab⁻¹
- Expected total uncertainty on the cross section of 14% (20%) for "Run2" Improved" ("Run2") (experimental precision significantly better than the precision of the current SM prediction)

Backup

Summary of ATLAS 139 fb⁻¹/ 13 TeV results:

JHEP 11 (2021) 118

Four tops 1L+2OSL, combination with SS

Four tops 1L+2OSL

- Single lepton/ opposite sign dileptons
 - larger Branching Fraction (56%)
 - \circ large irr. background tt+jets:
 - 1+3 steps data-driven correction method
 - dedicated control/validation regions
 - Simultaneous profile likelihood fit in CRs (H_T) and SRs (BDT)

$$\mu = 2.2 \pm 0.7 ({
m stat})^{+1.5}_{-1.0} ({
m syst}) = 2.2^{+1.6}_{-1.2}$$

$$\sigma_{tar{t}\,tar{t}}=26^{+17}_{-15}~{
m fb}$$
 1.9(1.0) σ Obs. (Exp.) significance

Four tops 1L+2OSL

- Single lepton/ opposite sign dileptons
 - larger Branching Fraction (56%)
 - \circ large irr. background tt+jets:
 - 1+3 steps data-driven correction method
 - dedicated control/validation regions
 - Simultaneous profile likelihood fit in CRs (H_T) and SRs (BDT)

$$\mu = 2.2 \pm 0.7 (ext{stat})^{+1.5}_{-1.0} (ext{syst}) = 2.2^{+1.6}_{-1.2}$$

$$\sigma_{tar{t}tar{t}}=26^{+17}_{-15}~{
m fb}$$
 1.9(1.0) σ Obs. (Exp.) significance

Four tops 1L+2OSL

- Single lepton/ opposite sign dileptons
 - larger Branching Fraction (56%)
 - \circ large irr. background tt+jets:
 - 1+3 steps data-driven correction method
 - dedicated control/validation regions
 - Simultaneous profile likelihood fit in CRs (H_T) and SRs (BDT)

$$\mu = 2.2 \pm 0.7 (ext{stat})_{-1.0}^{+1.5} (ext{syst}) = 2.2_{-1.2}^{+1.6}$$

$$\sigma_{tar{t}\,tar{t}}=26^{+17}_{-15}~{
m fb}$$
 $1.9(1.0)\sigma$ Obs. (Exp.) significance

and extrap. strategy

- The two analyses, combined, increase the obs. significance (wrt 2.6 expected)
- Simple, conservative assumption for HL-LHC extrapolation:
 - study only the
 2SS+multilepton channel (exact for early results)

J	Uncertainty source		μ
S	Signal modelling		
	$\bar{t}t\bar{t}$ cross section	+0.56	-0.31
	$ar{t}tar{t}$ modelling	+0.15	-0.09
E	Background modelling		
	$ar{t}W + ext{jets modelling}$	+0.26	-0.27
ti	$ar{t}t modelling$	+0.10	-0.07
N	Non-prompt leptons modelling	+0.05	-0.04
	$ar{t}H + ext{jets modelling}$	+0.04	-0.01
L	$\bar{t}Z$ +jets modelling	+0.02	-0.04
ti ti C C T J	Other background modelling	+0.03	-0.02
	Charge misassignment	+0.01	-0.02
Ī	nstrumental		
J	let uncertainties	+0.12	-0.08
J	let flavour tagging (light-flavour jets)	+0.11	-0.06
	Simulation sample size	+0.06	-0.06
I	Luminosity	+0.05	-0.03
J	let flavour tagging (b-jets)	+0.04	-0.02
J	let flavour tagging (c-jets)	+0.03	-0.01
	Other experimental uncertainties	+0.03	-0.01
$\begin{array}{c} \mathbf{Z} \\ \mathbf{J} \\ \mathbf{Z} \\ \mathbf{S} \\ \mathbf{S} \end{array}$	Total systematic uncertainty	+0.70	-0.44
S	Statistical	+0.42	-0.39
N	Non-prompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})	+0.05	-0.04
ti	$ar{t}W$ normalisation	+0.04	-0.04
T	Total uncertainty	+0.83	-0.60

Intermezzo

- The profile likelihood is a way to include systematic uncertainties in the likelihood
 - systematics included as "constrained" nuisance parameters
 - the idea behind is that systematic uncertainties on the measurement of μ come from *imperfect knowledge* of parameters of the model (S and B prediction)
 - still some *knowledge* is implied: " $\theta = \theta_0 \pm \Delta \theta$ "

external / a priori knowledge interpreted as "auxiliary/subsidiary measurement", implemented as constraint/penalty term, i.e. probability density function (usually Gaussian, interpreting " $\pm\Delta\theta$ " as Gaussian standard deviation)