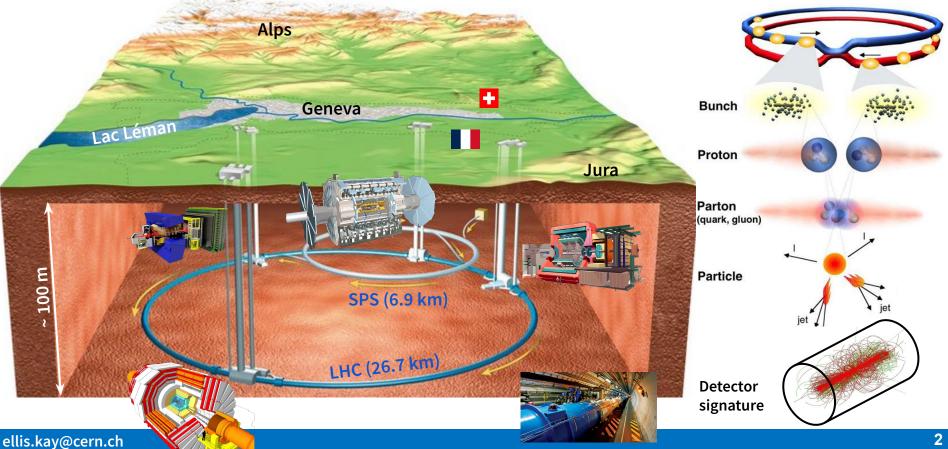


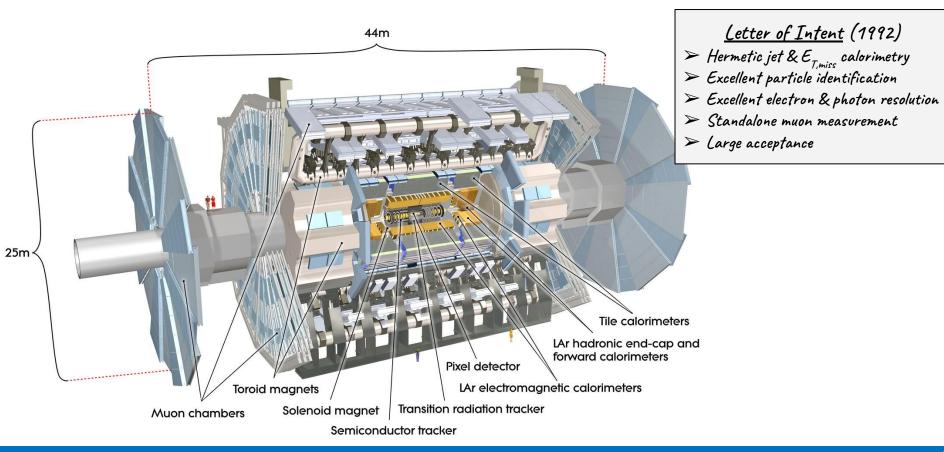
Canadian Association of Physicists

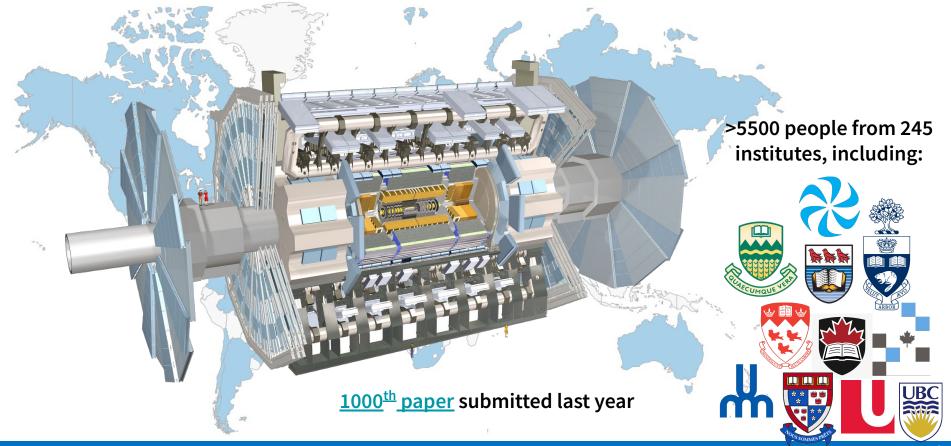
Association canadienne des physiciens et physiciennes

Highlights from the ATLAS Experiment


Ellis Kay - The University of Victoria

CAP 2022, Hamilton ON


The Large Hadron Collider

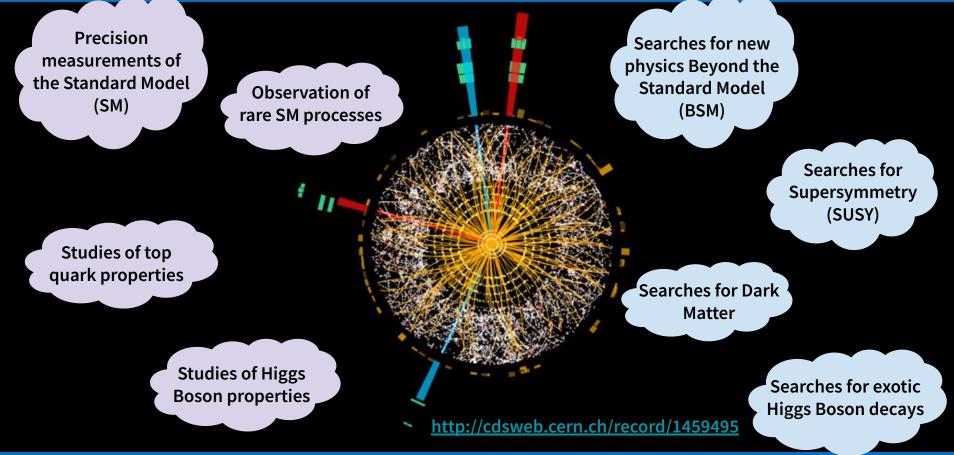

The ATLAS Experiment

The ATLAS Collaboration

ATLAS Run-2 Data

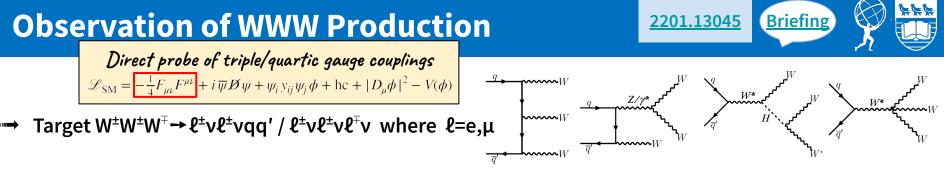
A wealth of proton-proton collision data **Run-2 Luminosity Public Results** 600 _e_ 160 Recorded Luminosity [pb ⁻¹/0.1] Run-1: 2011-2012 ATLAS Ldt=146.9 fb⁻¹ ATLAS Online, 13 TeV ATLAS √s = 13 TeV 500 2015: <µ> = 13.4 $\sqrt{s} = 7-8 \text{ TeV}$ Delivered: 156 fb LHC Delivered 2016: <µ> = 25.1 Recorded: 147 fb $\mathcal{L} = 25 \, \text{fb}^{-1}$ 2017: <µ> = 37.8 Physics: 139 fb 400 ATLAS Recorded 2018: <µ> = 36.1 Good for Physics Total: <u> = 33.7 300 200 Run-2: 2015-2018 $\sqrt{s} = 13 \text{ TeV}$ 100 20 $\pounds = 139 \, \text{fb}^{-1}$ 0. 10 30 50 70 20 40 60 80 Jul'15 Jan'16 Jul'16 Jan'17 Jul'17 Jan'18 Jul'18 Mean Number of Interactions per Crossing Month in Year

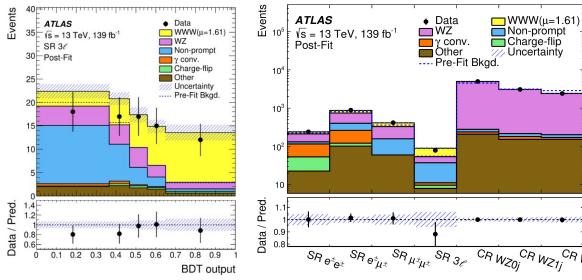
→ Excellent detector performance, 95% of recorded run-2 data usable for physics


~140 papers from this dataset thus far

Too many to summarise here...

<u>Will focus on a few recent results</u> which exemplify the range of physics analyses


Physics with ATLAS



Testing the Standard Model

- Standard Model Production Cross Section Measurements Status: February 2022 [dd] △O total (×2) ATLAS Preliminary 10^{11} Theory $\sqrt{s} = 5,7,8,13$ TeV LHC pp $\sqrt{s} = 13 \text{ TeV}$ Data 3.2 - 139 fb⁻¹ 10^{5} LHC pp $\sqrt{s} = 8$ TeV 10^{4} Data 20.2 - 20.3 fb-1 LHC pp $\sqrt{s} = 7$ TeV 10^{3} Data 4.5 - 4.9 fb⁻¹ 10² LHC pp $\sqrt{s} = 5$ TeV Data 0.03 - 0.3 fb-1 10^{1} 1 0 10^{-1} 0.7 10^{-2} 10^{-3} $H \rightarrow 4/$ _{γγγ} _{Vγγ}Ζγjj Hjj VH V γ t \bar{t} V t \bar{t} H WWV VVii PP Jets γ w z tī t vv Yγ н tot tot. tot.
- Cross section measurements
 spanning many orders of magnitude
 Alexandre's talk
 Sahibjeet's talk
- Observations of rare SM processes with tiny cross-sections
- Measurements of top quark properties, which could be sensitive to new physics
- Confirm predictive power of the SM, plus improve understanding of backgrounds in searches for new physics

- Dominant background (WZ+jets) estimated with control regions
- → Signal extracted using BDTs for 3ℓ & 2ℓ channels

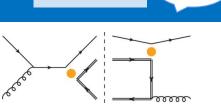
WWW production observed with 8.2σ (5.4 σ) obs (exp)

SM prediction for WWW+WH : 511 ± 42 fb @ NLO QCD

A

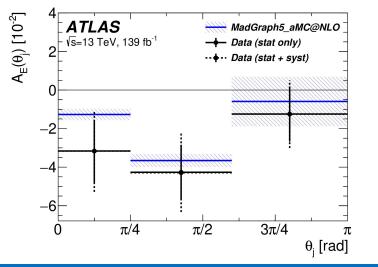
 $W^+W^+W^- \rightarrow e^+\nu e^+\nu\mu^-\nu$

1

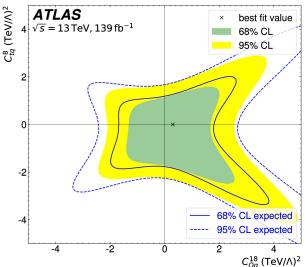

Run: 349169 Event: 1043374730 2018-04-30 01:58:32 CEST

Top Energy Asymmetry

Probe matter/antimatter asymmetry

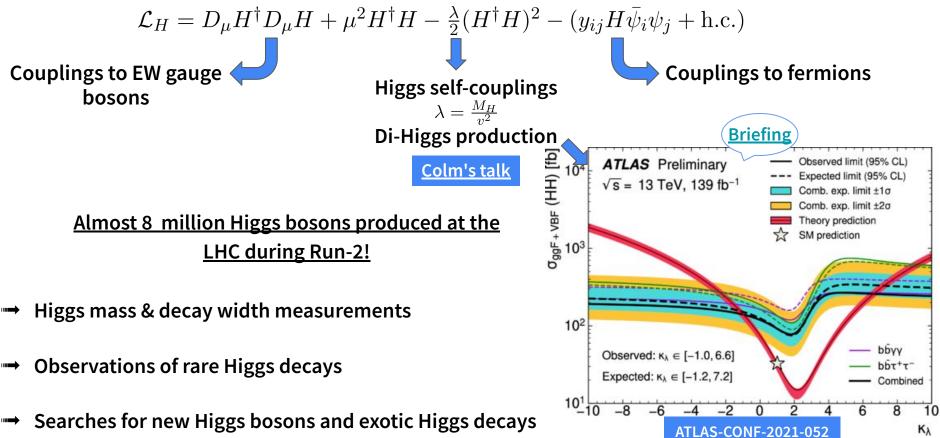

- → Asymmetry in qg → $t\bar{t}$ +jet events
 - Determine using energy difference as a function of jet angle

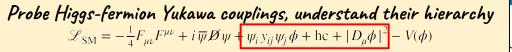
$$A_E(\theta_j) \equiv \frac{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) - \sigma^{\text{opt}}(\theta_j | \Delta E < 0)}{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) + \sigma^{\text{opt}}(\theta_j | \Delta E < 0)}$$


2110.05453

- $$\begin{split} \sigma^{\text{opt}}(\theta_j) &= \sigma(\theta_j | y_{t\bar{t}j} > 0) + \sigma(\pi \theta_j | y_{t\bar{t}j} < 0) \,, \\ \Delta E &= E_t E_{\bar{t}} \end{split}$$
- → Measure boosted ℓ+jets with hard additional jet, unfold at particle level

 No significant deviation from SM

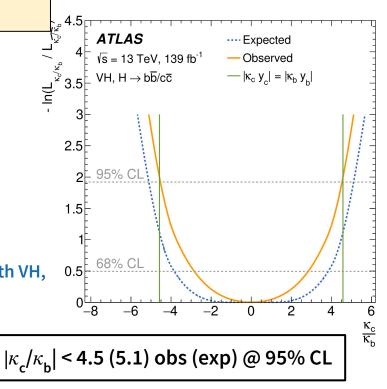

- Sensitive to 4-quark
 - EFT operators 🗕
 - 2D limits on choice of 6 operators


Briefing

Higgs Studies

Z ×

→ Focus on VH production


Z ×

► Facilitate triggering, enhanced S/B w.r.t inclusive H→cc̄

₩ ¥ •^^^^•

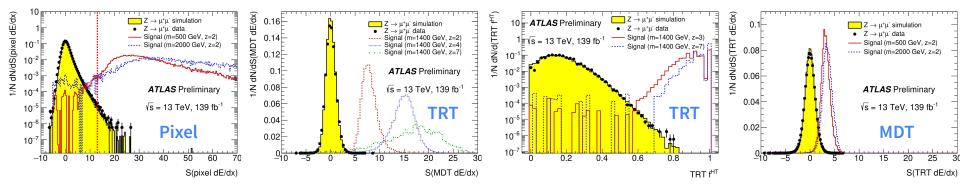
- Tag with NN c-tagger AND veto with BDT b-tagger
- Also b-tag veto for non-signal jets, ensuring orthogonality with VH,
 H → bb̄ analysis, allowing for combination of results
- ➡ Perform binned likelihood fit to m_{cc} in 16 SRs & 28 CRs
- → Can interpret results in terms of couplings, based on κ framework (see <u>1</u>, <u>2</u>)
- → Confirm weaker Higgs coupling to charm than bottom!

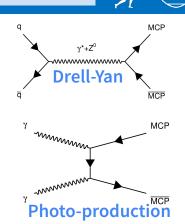
 $(m_{\rm b}/m_{\rm c} = 4.578 \pm 0.008)$

Searching Beyond the Standard Model

- → New resonances, 'bump hunting'
- Processes with large missing transverse energy
- Deviations from SM in angular distributions of final state particles
- Signatures of long-lived particles

Dominique's talk

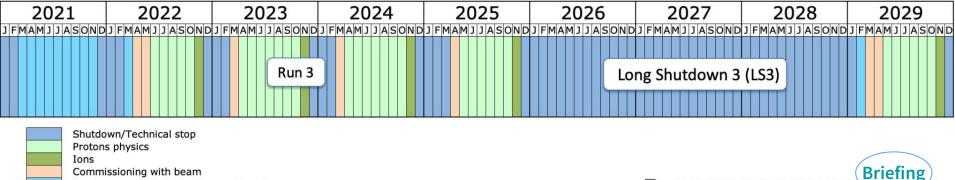

e.g. collider searches for Dark Matter (DM), SUSY searches..

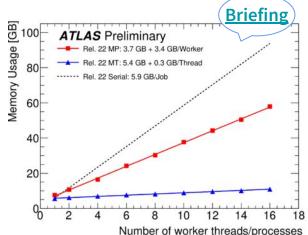

	Model	ℓ, γ	Jets†	Emiss	∫£ dt[fb] Limit	5		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD DBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow (\gamma qq)$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \gamma \\ - \\ - \\ 2 \gamma \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j 2j $\ge 3j$ - 2j/1J $\ge 1b, \ge 1J/2j$ $\ge 2b, \ge 3j$	Yes - - - Yes Yes Yes	139 36.7 37.0 3.6 139 36.1 139 36.1 36.1 36.1	Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg M	11:1 8.5 Tev 9.55 Tev 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	n = 6	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1806.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \mathrm{SSM}\ Z' \to \ell\ell \\ \mathrm{SSM}\ Z' \to \tau\tau \\ \mathrm{Leptophobic}\ Z' \to bb \\ \mathrm{Leptophobic}\ Z' \to tt \\ \mathrm{SSM}\ W' \to \tau\tau \\ \mathrm{SSM}\ W' \to \tau\tau \\ \mathrm{SSM}\ W' \to \tau\tau \\ \mathrm{SSM}\ W' \to tt \\ \mathrm{HVT}\ W' \to WZ \to \ell\tau\ell \ell' \ \mathrm{model}\ \mathrm{H} \\ \mathrm{HVT}\ W' \to WZ \to \ell\tau\ell' \ell' \ \mathrm{model}\ \mathrm{H} \\ \mathrm{HVT}\ W' \to WH \ \mathrm{model}\ \mathrm{B} \\ \mathrm{HSM}\ W_R \to \mu N_R \end{array}$	2 e,μ 2 τ - 0 e,μ 1 e,μ 1 τ - 3 e,μ C 3 e,μ 2 μ	$\begin{array}{c} - \\ 2 b \\ \geq 1 b, \geq 2 J \\ - \\ 2 j / 1 J \\ 2 j / 1 J \\ 2 j (VBF) \\ \geq 1 b, \geq 2 J \\ 1 J \end{array}$	- Yes Yes Yes Yes Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 80	27 mass 27 mass 27 mass 27 mass 49 mass 49 mass 49 mass 49 mass 40 GeV 40 mass 40 GeV	5.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 5.0 TeV 4.3 TeV 4.3 TeV 3.2 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_F = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-02 ATLAS-CONF-2021-04 2004.14636 ATLAS-CONF-2022-00 2007.05293 1904.12679
ũ	Cl qqqq Cl ℓℓqq Cl eebs Cl µµbs Cl tttt	- 2 e,μ 2 e 2 μ ≥1 e,μ	2 j - 1 b 1 b ≥1 b,≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ	1.8 TeV 2.0 TeV 2.57 TeV	$\begin{array}{c} \textbf{21.8 TeV} & \eta_{\bar{t}\bar{t}} \\ \textbf{35.8 TeV} \\ \textbf{g}_{*} = 1 \\ \textbf{g}_{*} = 1 \\ C_{t\bar{t}} = 4\pi \end{array} \qquad \eta_{\bar{t}\bar{t}} \end{array}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DM Pseudo-scalar med. 2HDM+a	0 e, μ, τ, γ 0 e, μ, τ, γ) 0 e, μ multi-channe	1 - 4 j 1 - 4 j 2 b	Yes Yes Yes	139 139 139 139	m _{med} 376 GeV m _{med} 376 GeV m _{med} 560 GeV	2.1 TeV 3.1 TeV	$\begin{array}{l} g_{q}{=}0.25, g_{\chi}{=}1, m(\chi){=}1 \; {\rm GeV} \\ g_{q}{=}1, g_{\chi}{=}1, m(\chi){=}1 \; {\rm GeV} \\ {\rm tan} \beta{=}1, g_{\chi}{=}0.8, m(\chi){=}100 \; {\rm GeV} \\ {\rm tan} \beta{=}1, g_{\chi}{=}1, m(\chi){=}10 \; {\rm GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-03
ΓO	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$\begin{array}{c} 2 \ e \\ 2 \ \mu \\ 1 \ \tau \\ 0 \ e, \mu \\ \geq 2 \ e, \mu, \geq 1 \ \tau \\ 0 \ e, \mu, \geq 1 \ \tau \\ 1 \ \tau \end{array}$	$\begin{array}{c} \geq 2 j \\ \geq 2 j \\ \geq 2 j \\ \geq 2 j, \geq 2 b \\ \geq 1 j, \geq 1 b \\ 0 - 2 j, 2 b \\ 2 b \end{array}$	Yes Yes Yes - Yes Yes Yes	139 139 139 139 139 139 139	LG mass LG mass LG mass LG mass LG mass LG mass LG mass	1.8 TeV 1.7 TeV 1.2 TeV 1.24 TeV 1.43 TeV 1.25 TeV 1.77 TeV	$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \Re(LQ_{3}^{0} \rightarrow b\tau) = 1 \\ \Re(LQ_{3}^{0} \rightarrow tr) = 1 \\ \Re(LQ_{3}^{0} \rightarrow tr) = 1 \\ \Re(LQ_{3}^{0} \rightarrow b\tau) = 1 \\ \Re(LQ_{3}^{0} \rightarrow b\tau) = 0.5, \text{Y-M coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
quarks		1 e, µ	L	Yes Yes	139 36.1 36.1 139 36.1 139	T mass B mass T mass T mass B mass B mass	1.4 TeV 1.34 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV	$\begin{array}{l} SU(2) \mbox{ doublet} \\ SU(2) \mbox{ doublet} \\ \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} Wt) = 1 \\ SU(2) \ singlet, \ \kappa_T = 0.5 \\ \mathcal{B}(Y \rightarrow Wb) = 1, \ c_F(Wb) = 1 \\ SU(2) \ doublet, \ \kappa_B = 0.3 \end{array}$	ATLAS-CONF-2021-02 1808.02343 1807.11883 ATLAS-CONF-2021-04 1812.07343 ATLAS-CONF-2021-01
fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton t^* Excited lepton v^*	- 1 γ - 3 e,μ 3 e,μ,τ	2j 1j 1b,1j -		139 36.7 36.1 20.3 20.3	q° mass q° mass b° mass r° mass r° mass	6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921
Other	Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	2,3,4 e, µ 2µ 2,3,4 e, µ (SS 2,3,4 e, µ (SS 3 e, µ, τ -)	Yes - Yes - - -	139 36.1 139 139 20.3 36.1 34.4	N ⁶ mass 91 N ₈ mass 91 H ¹⁴ mass 350 GeV H ¹⁴ mass 400 GeV monopole mass 600 GeV	0 GeV 3.2 TeV 1.08 TeV 1.22 TeV 2.37 TeV	$ \begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{**} \to \ell \tau) = 1 \\ \text{DY production}, g &= 5e \\ \text{DY production}, g &= 1g_D, \text{spin } 1/2 \end{split} $	2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-01 1411.2921 1812.03673 1905.10130
		= 13 TeV rtial data	$\sqrt{s} = 13$ full da			10 ⁻¹	1 1	¹⁰ Mass scale [TeV]	

Search for Multi-charged Particles

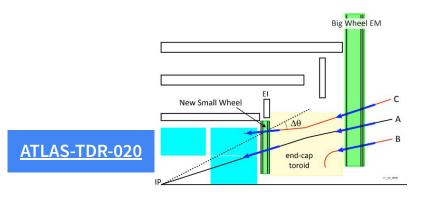
Look for BSM particles which may decay far from the primary vertex

- → Multi-Charged Particles (MCP) predicted by a plethora of models
 - Could explain some excesses observed in direct/indirect dark matter searches
- → Muon-like high ionisation signals, measured in pixel, TRT & MDT detectors
 - $|\mathbf{q}| = \mathbf{ze}$ with $2 \le \mathbf{z} \le 7$
- ➡ Single muon, missing energy & 'late muon' triggers used
 - Trigger on events with p_T > 50 GeV jet in the current bunch-crossing & p_T > 10 GeV muon in the next one
- → No significant excess, set mass limits ranging from ~1 TeV (q=|2e|) 1.6 TeV (q=|6e|)



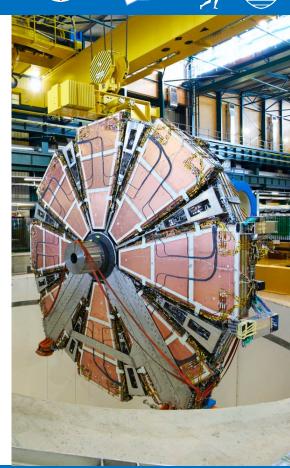

ATLAS-CONF-2022-034

Long Shutdown 2 & Run-3



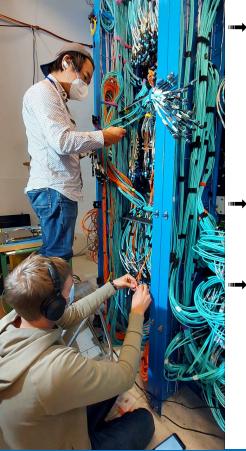
- Hardware commissioning/magnet training
- Used the shutdown to make multiple improvements to detector, triggers, software, computing...
 - A longer shutdown than expected... restarting this year
 - Performed installation & commissioning of new hardware around COVID restrictions
 - Held remote 'milestone weeks' to simulate ATLAS control room in running conditions & train

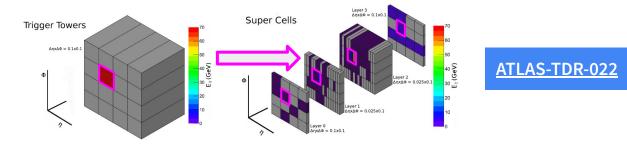
Phase-I Muon System Upgrade


- Replace existing small muon wheels with New Small Wheels (NSWs)
- ➡ Fast & precise muon tracking with micromegas & small-strip thin-gap chambers
 - Improve spatial resolution & granularity
 - ➡ 7x improvement in online fakes rejection & offline tracking in endcaps

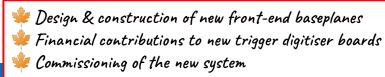
→ Both A-side and C-side NSW have been installed in ATLAS

Constructed 25% of required sTGCs


eq Performed assembly, installation & commissioning at CERN

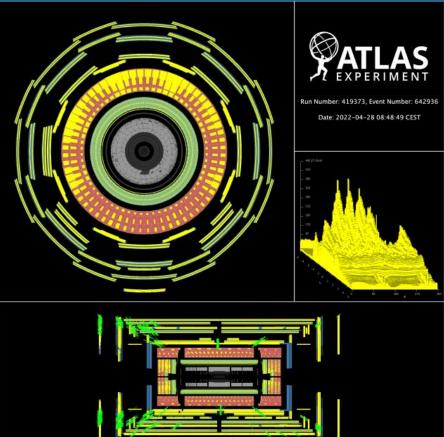

Briefing

Phase-I Liquid Argon Calorimeter Upgrade



→ Finer granularity information passed from the LAr calorimeter to L1 trigger

- Up to 10x granularity & provides shower shape information
 - Improved discrimination between electrons & jets
 - E_T threshold may be lowered by 7 GeV while maintaining current L1 trigger rate
- Requires upgraded front-end & back-end electronics
 - Installation completed during the long shutdown
 - Phase-I system is now used concurrently with the legacy system, undergoing commissioning as the ATLAS trigger upgrade continues



ellis.kay@cern.ch

Beam Splashes

- → Friday 22nd April marked the start of Run-3
- Need to recommission accelerator & safely ramp up beam energy/intensity
- Performed beam 'splashes'
 - Single proton beam, hitting a collimator upstream of the detector
- → Send splashes from one side at a time
 - Subsystems can perform timing studies, commission new upgrades
- → Had first 13.6 TeV collisions on 31st May!

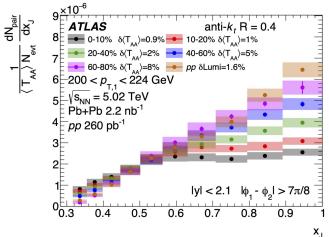
Conclusions & Outlook

- → ATLAS has an <u>extremely diverse</u> physics programme, with >100 published Run-2 results so far
 - Only a handful of the latest results presented here
 - See the list of all public results on the <u>AtlasPublic twiki</u>, and catch up on latest news with ATLAS <u>briefings</u>
- Many of these analyses were completed during the long shutdown, during which time the phase-I upgrades were also installed
 - ➡ The collaboration were able to commission these upgrades & prepare experts & shifters, in spite of the challenges of international lockdowns
 - ► Now ready for Run-3 data, at higher luminosity & increased pile-up
- → Run-3 has begun!
 - Beam 'splashes' and 900 GeV / 13.6 TeV pp collisions have now been observed in ATLAS, after the long break
- → Phase-II upgrades, to be installed for the HL-LHC (2029)
 - See <u>Maximilian's</u> & <u>Thomas'</u> talks

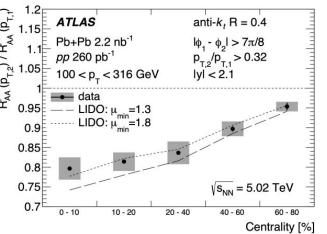
Canadian Association of Physicists

Association canadienne des physiciens et physiciennes

Backup



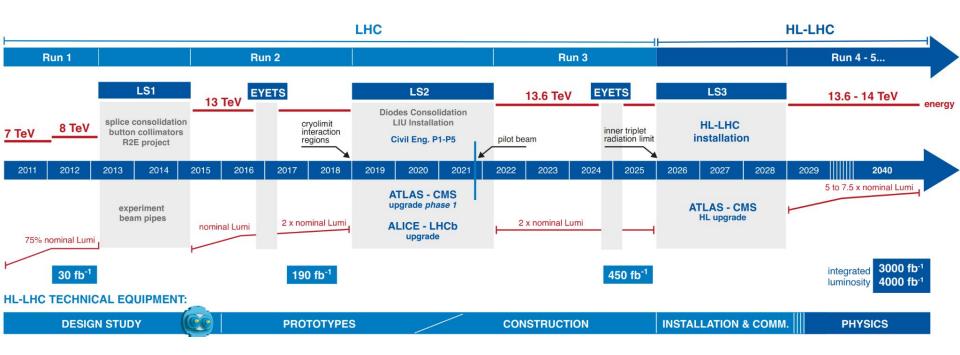
Heavy Ion Collision Studies


2205.00682 Briefing

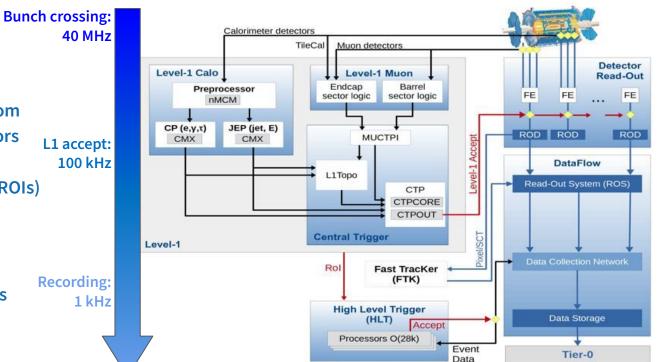
Probe the quark-gluon plasma

- Not just pp collisions from the LHC... also proton-lead, lead-lead and xenon-xenon
- → Many studies arising from these collisions, e.g. jet suppression in Pb-Pb
 - Particle yields modified compared to pp scattering $R_{AA} = \frac{1}{N_{evt}} \frac{dN_{jet}}{dp_{T}} / \left(\langle T_{AA} \rangle \frac{d\sigma_{pp}}{dp_{T}} \right)$
 - Study rate of jets for a given centrality interval
 - → Measure 2D p_T distributions of leading dijet pair, unfold to extract $\frac{dN_{pair}}{dp_{T,1}dp_{T,2}}$ project across p_{T,1} selections to extract $\frac{dN}{dx_{T}}$, where $x_{J} \equiv p_{T,2}/p_{T,1}$

- → Measure R_{AA}^{pair}, quantifying suppression of each jet in the dijet
- → Observe 3σ suppression of subleading jets to leading jets in most peripheral collisions

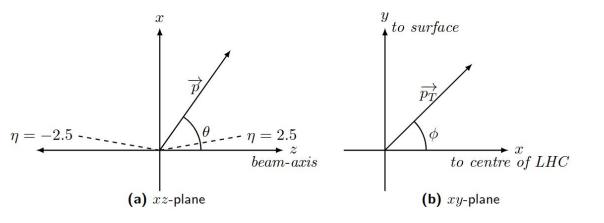

LHC Schedule

LHC / HL-LHC Plan

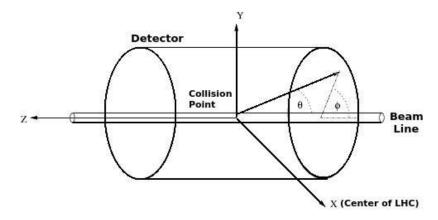


The ATLAS Trigger

2007.12539


→ Not all events observed by ATLAS contain interesting information...

- Select events with trigger
- 🛥 Level-1
 - ➡ Hardware based
 - Use subset of information from calorimeters & muon detectors
 - **Decision made in** $< 2.5 \,\mu s$
 - Defines Regions Of Interest (ROIs)
- → High-Level Trigger (HLT)
 - Software based
 - Detailed analysis of L1 events in ROIs


LHC Coordinate System

$$\eta = -\ln \tan\left(\frac{\theta}{2}\right)$$

$$\Delta R = \sqrt{\left(\Delta\phi\right)^2 + \left(\Delta\eta\right)^2}$$

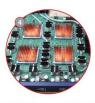
<u>1911.04632</u>

2018 Data Quality Efficiency [%]													
Dataset	Inner Tracker			Calorimeters		Muon Spectrometer			Magnets		Trigger		
Dataset	Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid	L1	HLT
<i>pp</i> @ 13 TeV	99.78	99.77	100	99.67	100	99.80	99.72	99.98	<u>99.98</u>	100	99.58	99.99	99.99
$pp @ 13 \text{ TeV} (\mu = 2)$	100	100	100	100	100	99.07	99.94	100	99.98	100	100	98.03	100
Pb-Pb @ 5.02 TeV	100	100	100	99.99	100	100	100	100	99.98	100	83.25	99.97	100
				Data Quality Efficiency [%]			Integrated Luminosity			6			
<i>pp</i> @ 13 TeV				97.46		58.5 fb^{-1}							
$pp @ 13 \text{ TeV} (\mu = 2)$				92.86			193 pb ⁻¹						
Pb-Pb @ 5.02 TeV				82.54			1.44 nb^{-1}						

ATLAS LS2 Upgrades

https://home.cern/press/2022/ATLAS-upgrades-LS2

MUON NEW SMALL WHEELS (NSW)


Installed new muon detectors with precision tracking and muon selection capabilities. Key preparation for the HL-LHC.

NEW READOUT SYSTEM FOR THE NSWs

The NSW system includes two million micromega readout channels and 350 000 small strip thin-gap chambers (sTGC) electronic readout channels.

LIQUID ARGON CALORIMETER

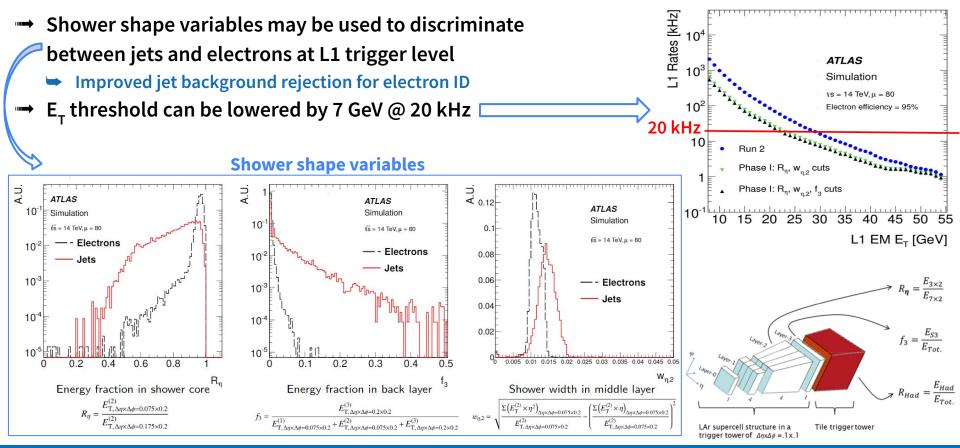
New electronics boards installed, increasing the granularity of signals used in event selection and improving trigger performance at higher luminosity.

TRIGGER AND DATA ACQUISITION SYSTEM (TDAQ)

Upgraded hardware and software allowing the trigger to spot a wider range of collision events while maintaining the same acceptance rate.

NEW MUON CHAMBERS IN THE CENTRE OF ATLAS

Installed small monitored drift tube (sMDT) detectors alongside a new generation of resistive plate chamber (RPC) detectors, extending the trigger coverage in preparation for the HL-LHC.


ATLAS FORWARD PROTON (AFP)

Re-designed AFP time-of-flight detector, allowing insertion into the LHC beamline with a new "out-of-vacuum" solution.

ellis.kay@cern.ch

Expected LAr Super Cell Performance

Run-3 Detector Status https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ApprovedPlotsATLASDetector

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	96.7%
SCT Silicon Strips	6.3 M	98.3%
TRT Transition Radiation Tracker	350 k	96.6%
LAr EM Calorimeter	170 k	100%
Tile Calorimeter	5200	99.2%
Hadronic End-Cap LAr Calorimeter	5600	99.9%
Forward LAr Calorimeter	3500	99.8%
LVL1 Calo Trigger	7160	99.9%
LVL1 Muon RPC Trigger	383 k	99.8%
LVL1 Muon TGC Trigger	312 k	100%
MDT Muon Drift Tubes	344 k	99.7%
MicroMegas NSW	2.1 M	98.0%
STGC NSW	358 k	99.2%
RPC Barrel Muon Chambers	383 k	87.7%
TGC End-Cap Muon Chambers	312 k	99.4%
ALFA	10 k	100%
AFP	430 k	100%
LUCID	2x16	100%
ZDC	2x20	100%