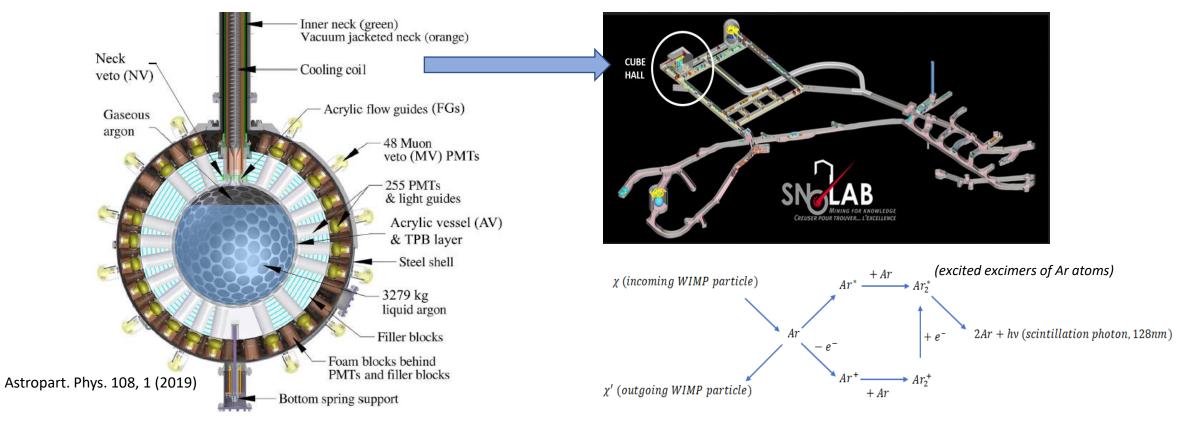


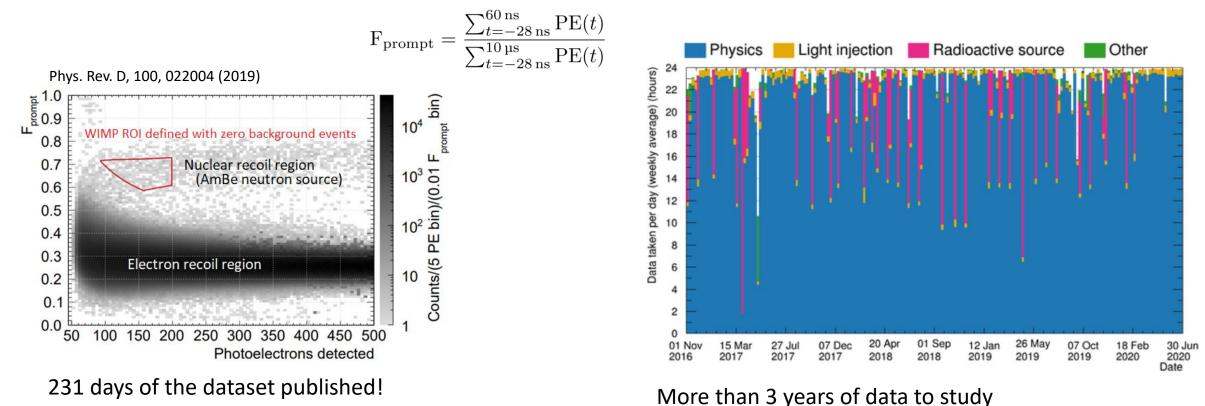

³⁹Ar decay analysis and annual modulation search with DEAP-3600

Gurpreet Kaur Canadian Association of Physicists Conference 2022 McMaster University, Hamilton

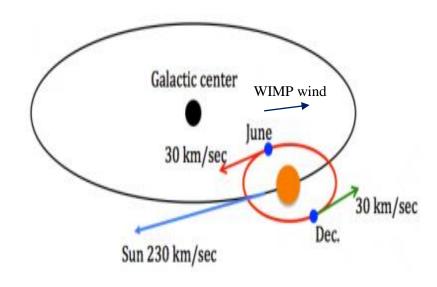

June 6, 2022

Outline

- The DEAP-3600 experiment
- Annual modulation for WIMP search
- Event rate analysis
- ³⁹Ar dating and detector systematics
- Summary
- References


DEAP-3600 experiment

- The Dark matter Experiment using Argon Pulse-shape discrimination
- Single phase Liquid Argon (LAr) scintillation light detector


DEAP-3600 experiment

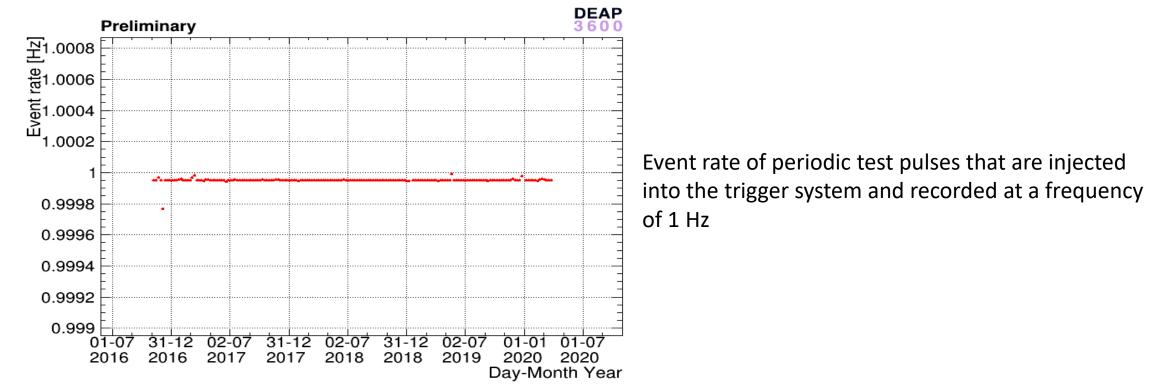
- Pulse Shape Discrimination is used with decay times of excimers, $\tau_s(\text{singlet}) = 6 \text{ ns and } \tau_T(\text{triplet}) = 1300 \text{ ns}$
- A prompt region is defined with the equation,

Annual modulation in nuclear recoil rate

• Annual modulation of the expected WIMP signal, not expected in most of the known backgrounds

Nuclear recoil rates,

$$\frac{dR}{dE_R}(t) = S_0(E_R) + S_m(E_R)\cos\omega(t - t_0)$$


The amplitude of the modulation,

$$A_1(E) \approx \frac{1}{2} \left[\frac{dR}{dE}(E, \text{ June } 1) - \frac{dR}{dE}(E, \text{ Dec } 1) \right]$$

• DEAP-3600 will be the first liquid argon experiment to search for an annual modulation of event rates that could be due to WIMP dark matter

Event rate analysis

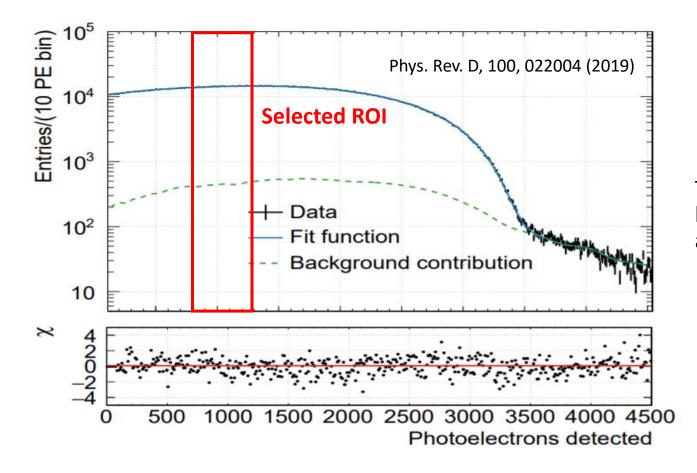
 Algorithm was made to plot the rates of different event types with time, which is validated with the calibration events

• For the further validation of the algorithm, the event rates for ³⁹Ar decay can be calculated

³⁹Ar lifetime measurement

• ³⁹Ar is the dominant electron recoil background and is mainly produced by nuclear interactions from cosmic rays,

 ${}^{40}_{18}Ar_{22} + n \rightarrow {}^{41}_{18}Ar_{23} \rightarrow 2n + {}^{39}_{18}Ar_{21}, \quad {}^{40}_{18}Ar_{22} + n \rightarrow {}^{39}_{17}Cl_{22} + d \quad \text{where,} \quad {}^{39}_{17}Cl_{22} \rightarrow {}^{39}_{18}Ar_{21} + e^- + \bar{\nu}_e$


• Nuclear decay of ³⁹Ar,

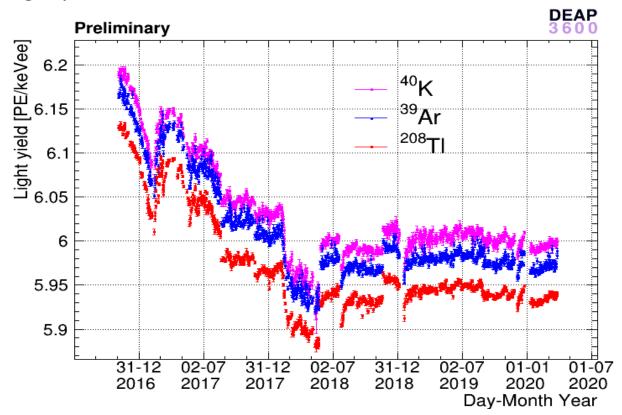
 $^{39}_{18}Ar_{21} \rightarrow ^{39}_{19}K_{20} + e^- + \bar{\nu}_e$ (Half-life = 269+/-3 years measured in 1965)

- The exponential decay fit function with other background events can be used with the event rates of ³⁹Ar decays to determine the mean lifetime from this direct measurement
- DEAP is the first experiment measuring the decay rate with time for the half-life of this isotope which would contribute to the fields using radiological dating such as geology and geochronology

Good stability of detector and complete understanding of systematics is required!

Region of interest in ³⁹Ar beta spectrum

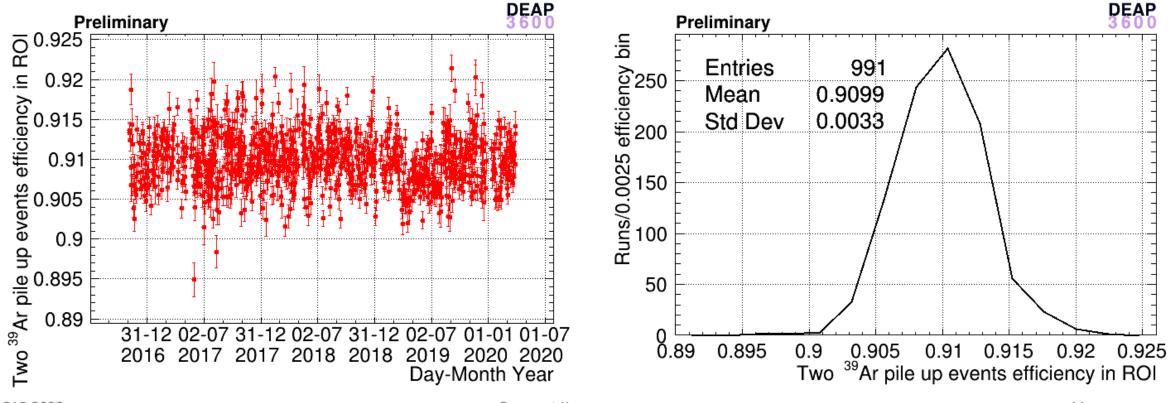
The differential systematics are evaluated for the lifetime study and will be used in the modulation analysis in WIMP nuclear region


Event rate fit model for ROI

$$R(t) = R_0 * \exp(\frac{-t}{\tau}) * \prod_j \epsilon_{1,j}(t) + \left(\frac{f_{2^{39}ArinROI}}{f_{1^{39}ArinROI}^2}\right) * R_0^2 * \delta t * \exp(\frac{-2t}{\tau}) * \prod_j \epsilon_{2,j}(t) + \left(\frac{f_{3^{39}ArinROI}}{2 * f_{1^{39}ArinROI}^3}\right) * R_0^3 * \delta t^2 * \exp(\frac{-3t}{\tau}) * \prod_j \epsilon_{3,j}(t) + \left(\frac{f_{3^{39}ArinROI}}{f_{1^{39}ArinROI}}\right) * R_0 * \exp(\frac{-t}{\tau}) * R_{Cherenkov}(t) * \delta t * \prod_j \epsilon_{ArCherenkov,j} + R_{bg}$$

R(t) is the activity of total event rates in ROI at any time t, R_0 is the activity of ³⁹Ar at the beginning of the dataset, and τ is the mean lifetime of the ³⁹Ar isotope

Light Yield Stability in detector


• The light yield of the detector was stable and has a little variation of 0.3 PE/keVee over the dataset

• Corrections are applied for the very little variations of light yield for precise measurement of ³⁹Ar decay events

Event selection efficiency

- Time dependence on the efficiency of selecting event types is investigated
- Selection of ³⁹Ar decay events in ROI is almost perfectly efficient

Systematic uncertainty on mean lifetime of ³⁹Ar

Systematic uncertainty source	Uncertainty on τ (year)
Light yield corrections to energy	11.6
Efficiency for selecting single ³⁹ Ar events	0.1
Efficiency for selecting double ³⁹ Ar events	2.9
Efficiency for selecting triple ³⁹ Ar events	0.1

Total systematic uncertainty on τ is maximum of 12 years

Preliminary

Summary

- The event rate analysis in nuclear recoil signals over time is an alternate way to look for the interaction of WIMPs with argon
 - A good understanding of detector response and systematics is required (especially at low energies)
- The stability of the DEAP-3600 detector is very good over more than three years of the running period
- The study of the time dependence of different event rates includes many exciting analyses
- The background ³⁹Ar beta decay events can be used for the interesting measurements such as the lifetime of these isotopes which would contribute to other fields like K-Ar and Ar-Ar dating
- The dominant systematic affecting the event rate studies are investigated in detail and the results will be presented in the upcoming publications

NIVERSIT OF LONDON

February 2022

Canadian Nuclear Laboratories Laboratoires Nucléaires Canadiens

Ciemat Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

References

- Stoenner R W, Schaeffer O A, and Katcoff S (1965). Half-Lives of Argon-37, Argon-39, and Argon-42. Science, 148, 1325
- Lewin J D and Smith P F (1996). Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astroparticle Physics, 6, 87
- Freese K, Lisanti M, and Savage C (2013). Annual Modulation of Dark Matter: A Review. Reviews of Modern Physics, 1209, 3339
- DEAP-3600 Collaboration (2018). First results from the DEAP-3600 dark matter search with argon at SNOLAB. Physical review letters, 121, 071801
- DEAP-3600 Collaboration (2019). Search for dark matter with a 231-day exposure of liquid argon using DEAP-3600 at SNOLAB. Physical Review D, 100, 022004
- Froborg F and Duffy A R (2020). Annual modulation in direct dark matter searches. Journal of Physics G: Nuclear and Particle Physics, 47, 094002