Alpha Quenching Factor in Liquid Argon

<u>Susnata Seth</u>, Mark Boulay (on behalf of the DEAP Collaboration)

2022 Canadian Association of Physicists (CAP) Congress McMaster University, Hamilton, Canada

June 8, 2022

Outlines

Introduction

Objectives

Relative measurement of alpha quenching factor

Energy dependent quenching factor curve

Summary and Outlook

Introduction

- A portion of deposited energy by incident particle within a scintillating material (e.g. liquid argon) leads to light. This effect is known as **"quenching**".
- Quenching depends on incident particle's type and energy.
- Quenching Factor = $\frac{Measured Energy}{Deposited Energy} = \frac{Detectected Photoelectrons}{Light Yield \times Deposited Energy}$
- Light yield relates the energy deposited in the detector to the number of detected photoelectrons (PEs).
 - It can be measured from the calibration of energy response of detector.

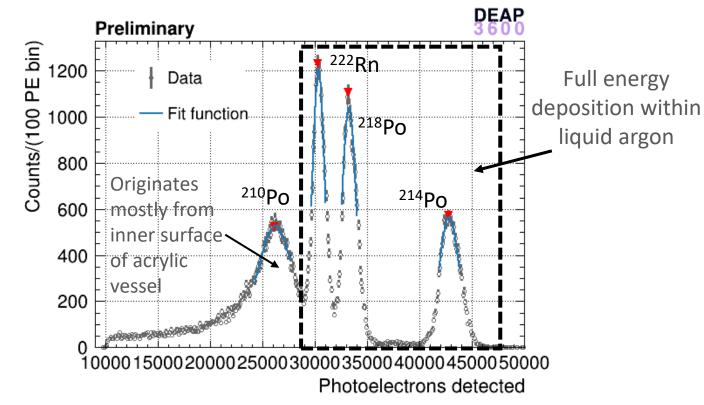
Importance of Alpha Quenching Factor

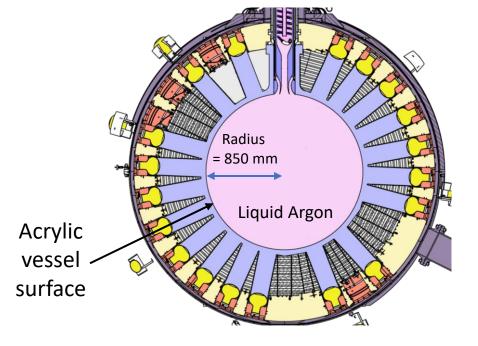
• Alpha particle is one of the intrinsic backgrounds of DEAP-3600 dark matter search experiment.

Originates from alpha-decays from short- and long-lived radon (²²²Rn) progeny.

- Liquid argon is used as target material for DEAP-3600 detector.
- Measurement of alpha quenching factor plays significant role in estimation of deposited energy.

Development of a well understood background model.


Identification and mitigation of alpha background events.


Objectives: Analysis Method

- Absolute uncertainty of alpha quenching factor is not known for DEAP-3600 experimental data.
- Present approach is to make the **relative measurement** of alpha quenching factor at high energy (~MeV).
- Relative uncertainties in quenching factor will provide the shape of the quenching factor vs energy curve.
- Probing the uncertainty and shape of the energy dependent alpha quenching factor curve at low energy region (~ few tens to few hundreds keV).

Measurement of Alpha Quenching Factor

Alpha Induced Events

	²³⁸ U Chain Decay Modes			
Parent Nuclei	Daughter Nuclei	Half-life, $t^{1/2}$	Q-value [MeV]	Decay Mode [MeV]
222 Rn	²¹⁸ Po	$3.823 \ d$	5.590	$\alpha[5.489]$
²¹⁸ Po	214 Pb	3.10 min.	6.114	α [6.002]
214 Pb	$^{214}\mathrm{Bi}$	$26.8 { m d}$	1.024	$\beta[1.024]$
$^{214}\mathrm{Bi}$	214 Po	$19.9 \min$	3.272	$\beta[3.272]$
^{214}Po	$^{210}\mathrm{Pb}$	164 3 <i>µ</i> s	7 833	α [7.686]
$^{210}\mathrm{Pb}$	²¹⁰ Po	22.3 yr	0.0635	β [0.0635]
210 Po	$^{206}\mathrm{Pb}$	$138.376 \ d$	5.407	$\alpha[5.304]$

- Three years (November, 2016 March, 2020) open dataset of DEAP-3600 experiment is used.
- Peaks are fitted by Gaussian distribution -- mean of Gaussian distribution is taken as the Photoelectron (PE) peak position.

Relative Measurement of Quenching Factor

- DEAP-3600 detector is calibrated at low energy (keV) region whereas alphas have energies of the order of MeV.
- Non-linearity in the measurement of light yield can lead to incorrect evaluation of quenching factor.
- Step I : Estimation of relative light yield using :
 - Alpha quenching factor for ²¹⁰Po isotope = $Q_{210_{Po}}^{Doke \ et \ al.}$ = 0.71 ± 0.028. [*Ref: T. Doke et al. NIMA 269 (1988) 291*]
 - Photoelectron (PE) value for alphas from ²²²Rn in DEAP-3600 data.
 - $Q_{222_{Rn}}^{Calib} = 0.71 \pm 0.028$

[Assumption: Negligible difference in quenching factor of alphas originated from ²¹⁰Po and ²²²Rn isotopes because energies of alphas are nearly same (5.304 MeV and 5.489 MeV respectively).]

- $PE_{222_{Rn}} = Q_{222_{Rn}}^{Calib} \times E_{222_{Rn}} \times LY_{Relative}$
- Step II : Calculation of quenching factor

•
$$Q_{218P0} = \frac{PE_{218P0}}{E_{218P0} \times LY_{Relative}} = \frac{PE_{218P0}}{PE_{222Rn}} \times \frac{E_{222Rn}}{E_{218P0}} \times Q_{222Rn}^{Calib}$$

• $Q_{214P0} = \frac{PE_{214P0}}{E_{214P0} \times LY_{Relative}} = \frac{PE_{214P0}}{PE_{222Rn}} \times \frac{E_{222Rn}}{E_{214P0}} \times Q_{222Rn}^{Calib}$

Using ratios of peak energies makes the analysis insensitive to the absolute energy calibration at high energy in DEAP-3600 experiment.

Ratio of PE can be obtained from DEAP-3600 data

Uncertainties in Quenching Factor

Isotope	Alpha Energy in MeV	PE _{isotope} PE _{222Rn}	$\frac{\text{Uncertainty}}{\text{in}} \frac{PE_{isotope}}{PE_{222}Rn}$	Quenching Factor	Relative Uncertainty in Quenching Factor	Uncertainty in Quenching Factor	Comments
²¹⁰ Po	5.305	-	-	0.710	-	0.028	Ref : T. Doke et al., NIMA 269 (1988) 291
²²² Rn	5.489	-	-	0.710	-	0.028	<i>Calibration data</i> [<i>QF is assumed to be</i> <i>same as</i> ²¹⁰ Po data]
²¹⁸ Po	6.002	1.096	0.002	0.712	0.001	0.028	From relative measurement
²¹⁴ Po	7.686	1.410	0.006	0.715	0.003	0.028	From relative measurement

Development of Energy Dependent Quenching Factor Curve

Quenching Factor Model

Birks' Law

- Local concentration of quenching agent (damage molecule) at any point on the track is proportional to stopping power of incident particle.
- Describes measured light per unit length (dL/dr) as a function of the electronic energy loss per length (dE/dr).

$$\frac{dL}{dr} = \frac{A\frac{dE}{dr}}{1 + kB\frac{dE}{dr}} \implies \frac{dL}{dE} = \frac{A}{1 + kB\frac{dE}{dr}}$$

A, kB are treated as fitted constants and can be estimated from experimental data.

• Quenching factor :

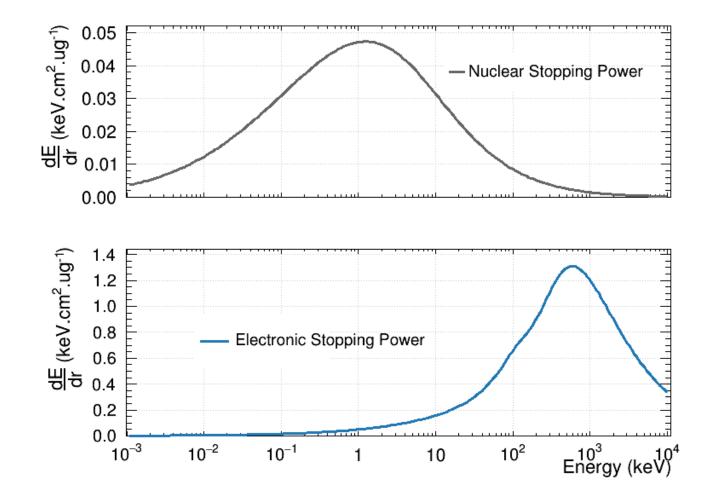
$$QF_{Birks}(E) = \frac{1}{N_{step}} \sum \frac{dL}{dE} = \frac{1}{N_{step}} \sum \frac{A}{1 + kB \frac{dE}{dr}}$$

[Ref: J. B. Birks, Proc. Phys. Soc. A 64 (1951) 874]

Lindhard's Approach

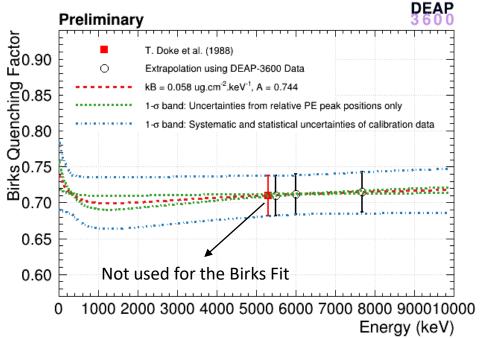
- Total energy loss by an incident particle within a substance can be divided into two parts:
 - □ Produces electronic excitation or ionization (electronic collision).
 - Produces translational motion of whole atom, excluding internal excitation of the atom (nuclear collision).

[Assumption: electronic and nuclear collision are unconnected]

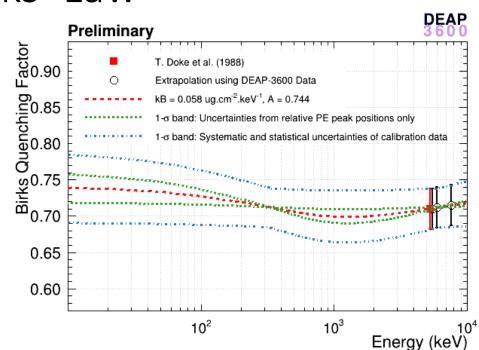

• Energy lost in ionization plays significant role in producing scintillation light.

Quenching factor :

$$QF_{Lindhard}(E) = \frac{E_{dep,electronic}}{E_{dep,electronic} + E_{dep,nuclear}}$$

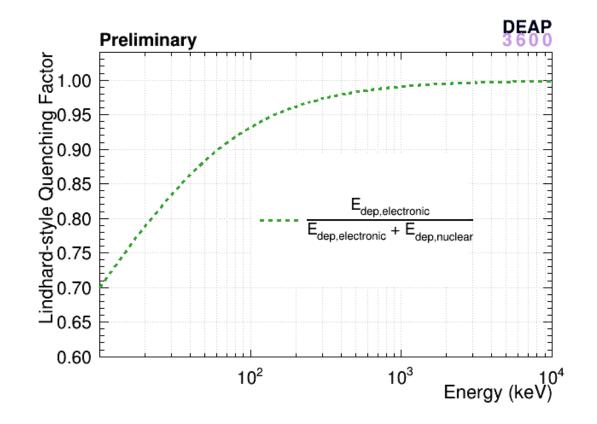

[Ref: J. Lindhard et al., Mat. Fys. Medd. Dan . Vid. Selsk . 33, no . 10 (1963)] 11

Stopping Power of Alpha in Liquid Argon

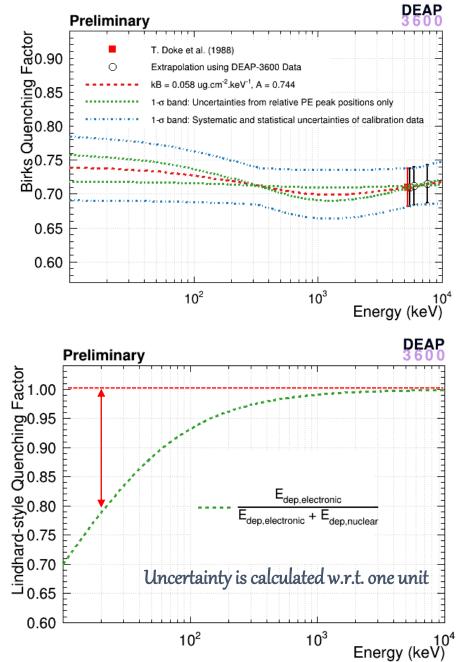


SRIM-2013 (The Stopping and Range of Ions in Matter)

Fit using Birks' Law

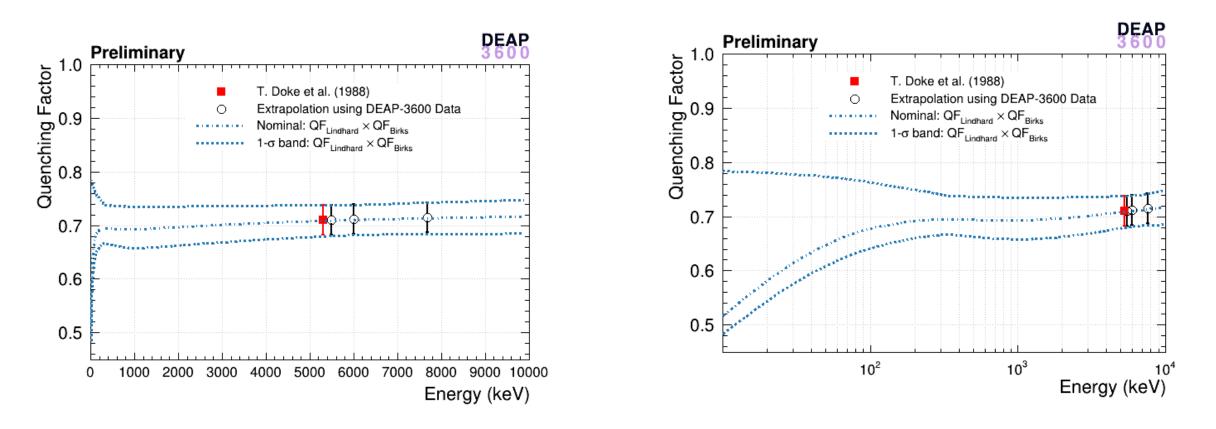


- 1-sigma contour $(\chi^2_{min}$ + 1.0) is drawn in (kB, A) parameter space.
- Shape of the 1-sigma band (green curve) depends on relative uncertainties of the DEAP-3600 data.
- At MeV energy, the relative uncertainty in quenching factor is quite small (0.2 - 0.4 %) ⇒ leads to constraint the energy dependence of quenching factor well ⇒ nearly flat.


- 1- σ upper and lower bands (green curve) are multiplied by $R_1 = \frac{Q_{max}^{Callb}}{Q_{max}^{222}Rn}$ and $R_2 = \frac{Q_{min}^{Callb}}{Q_{min}^{222}Rn}$, respectively. $[Q_{min}^{222}Rn]$ and $Q_{max}^{222}Rn$ are extracted from green curve]
- Shape (blue curve) is determined by 1- σ error band using relative uncertainties and consider absolute uncertainty of calibration data.
- Provides maximum and minimum values of quenching factor for each energy.

Lindhard-style Quenching Factor

Lindhard-style Quenching Factor for 10 keV - 10 MeV using SRIM stopping power curves.


Quenching Factor Curve from Relative Measurement

- Method is adopted from D.-M. Mei et al. approach [Ref: Astroparticle Physics 30 (2008) 12] which was used for nuclear recoils of few tens to few hundred keV:
 - Quenching Factor = Lindhard-style Quenching Factor × Birks' Quenching Factor.
 - Birks' Quenching Factor is dominant at higher energy region, whereas Lindhard-style quenching plays important role in lower energy region.

In (30 - 600) keV energy region,

- Electronic stopping power is dominant for alphas whereas in case of ⁴⁰Ar nuclear recoil, electronic and nuclear stopping power are comparable.
- For alphas, greater than 80% of total energy loss is due to electronic collision whereas nuclear recoils this is about (30 70)%.

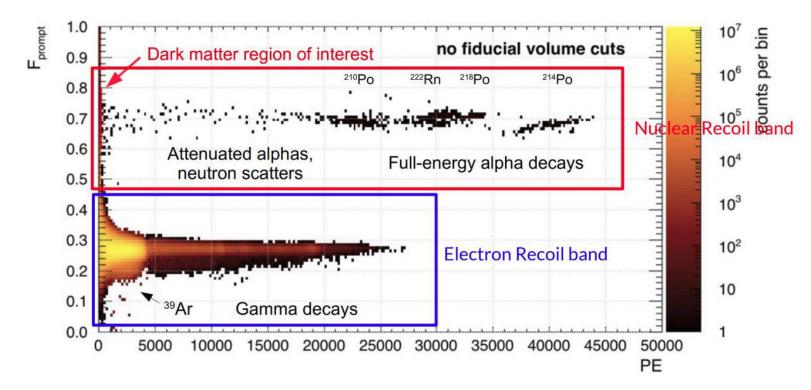
- Shape of the 1- σ error band for quenching factor can be validated by the measurement of quenching factor.
- Measurements of alpha quenching factors for few hundreds of keV few MeV region using Argon-1 (a modular single phase liquid argon cryostat) at Carleton University are underway. [see Michael Perry's presentation, M3-8 session, June 6 at 4:30 PM]

Summary and Outlook

- Relative measurement of alpha quenching factor is performed considering T. Doke et al.'s alpha quenching data for ²¹⁰Po as calibration data.
- We can well-constrain the energy dependence of quenching factor by using relative uncertainties.
- 1-sigma uncertainty bands for energy dependent quenching factor curve are developed.
 - To validate the uncertainty bands, measurement of alpha quenching factors using Argon-1 at Carleton University are underway.

Thank you for your kind attention

Extra Slides


Estimation of Relative Uncertainties

- Arises due to uncertainty in measurement of ratio of photoelectrons (PEs) at different energies.
 - Central region of the spherical volume is divided into 4 regions: (0-200) mm, (200-400) mm, (400-600) mm, (600 800)mm
 - Three years (November, 2016 March, 2020) open dataset is divided into 21 time windows.

Isotope	Ratio of PE		Standard Deviation of Ratio		
	Position of source	Time of occurrence	Position	Time	
²¹⁸ Po	1.0957	1.0962	0.0010	0.0015	1.096 ± 0.002 (uncertainty ~ 0.16 %)
²¹⁴ Po	1.4080	1.4117	0.0047	0.0032	1.410 \pm 0.006 (uncertainty ~0.4 %)

Activity of alpha –decays within liquid argon

Component	Activity
²²² Rn LAr	(0.153 ± 0.005) μBq/kg
²¹⁸ PoLAr	(0.159 ± 0.005) μBq/kg
²¹⁴ Po LAr	(0.153 ± 0.005) μBq/kg

