Developing a simulation for estimation of SiPM optical cross talk level

Dmytro Minchenko On behalf of JADDE collaboration CAP Congress 2022

8 June 2022

SiPMs

SiPMs are photodetectors.

They are arrays of APDs (semiconductor detectors), which are operating in Geiger mode outputting the sum of cell signal.

Voltage

SiPMs

One photon - one photo electron (p.e.) height of the output signal.

SiPMs

Two photons - two photo electron (p.e.) height of the output signal.

- APD cells located close to each other ($\sim \mu m$)
- Photons produced in an avalanche can trigger neighbour cell.
- Create artificial increase in signal

Figure: SiPM photo

Image credits: Juliette Martin CAP congress 2022 talk

- APD cells located close to each other (~µm)
- Photons produced in an avalanche can trigger neighbour cell.

Voltage

Create artificial increase in signal

Figure: SiPM optical cross talk illustration

JNIVERSIT

Time

Figure: SiPM signal

- Undesirable and unavoidable process
- Can be measured but requires a detector prototype, which is expensive to produce
- We would like to predict and minimize it in advance

- Undesirable and unavoidable process
- Can be measured but requires a detector prototype, which is expensive to produce
- We would like to predict and minimize it in advance

Create a simulation

SiPM crosstalk simulation

ALBERTA

Diagram: SiPM crosstalk simulation steps

Generate secondary photons here

Geant4 geometry

Here you can see the top view of the cells. The trenches are yellow lines, the avalanche area is in red.

Geant4 geometry

- Photons with wavelength from 440 nm to 1000 nm are produced in the avalanche region.
- Final positions and properties of the photons are stored

Analysis

Final positions of all secondary photons **FBK YZ plane**

What we count as a secondary avalanche

Initial photons position

- Electron generating region
- Holes generating region

Analysis

Analysis

Crosstalk MC vs Measured

Emitted light

- Some of the secondary photons escape the SiPM
- We can measure them
- Aperture • Select photons with $\theta < \theta_a$ Ħ γ

Emitted light FBK (poly-si trenches)

Emitted light FBK (poly-si trenches)

Conclusion and ongoing work

- We developed a MC simulation of optical cross talk
- We have preliminary results that give good qualitative agreement with the data
- Make the code work in parallel and get more quantitative data
- Fit data and MC
- Eventually will be able to predict cross talk levels of new possible designs of SiPMs including back side illuminated SiPMs

Thank you for your attention!

Back Up

Emitted light Hamamatsu (Tungsten trenches)

Weird artifacts when we change trenches material to tungsten

Simulated

Emitted light FBK (poly-si trenches)

Current status of code

Photons map

Some photons hit $\Sigma
eq 100\%$ trenches or do not trigger an avalanche

Electron propagation

Example with HPK

100k electrons were injected at a random point in left top corner of central cell. The distance from trenches was set to $7\mu m$.

Resulting distribution of the electrons that reached active region.

Analysis: building image

Weightening of injection map with the probabilities given by CT map

Changes in geometry and simulation

HPK trenches are made of tungsten. 1 million photons in a wavelength range of 440-1000nm were created in the simulation for each geometry.

In new configurations the wavelength range was changed to 660-1200nm and absorption length was taken for doped silicon.

Figure: Absorption coefficient of silicon with different doping

Emission spectra HPK

Used in Geant4

Measured

Analysis (gain and avalanche probability plots)

Figure 4.7: Measured single PE charge as a function of the over voltage for several devices tested for the nEXO experiment. The measurements of the FBK VUV HD 3 and Hamamatsu VUV4 were done at 163 K, while the one of the FBK VUV HD 1 was extrapolated from [59] and reported for a temperature of 213 K.

Fig. 6. Electron and hole Avalanche Triggering Probability (ATP), $P_e(d_P)$ and $P_h(d_W)$, for the three SiPMs analyzed in this article. For each $P_e(d_P)$ are also reported the data of Figs. 3 and 5 used to obtain the corresponding curve. Each $P_h(d_W)$ is derived using (12). The dashed regions represent the uncertainty on the hole probabilities $P_h(d_W)$ due to the uncertainty on the effective *k* values of Table I.

