Search for Single Production of a Vector-like *T* Quark Decaying into a Higgs Boson and Top Quark with Fully Hadronic Final States using the ATLAS Detector

Joel Foo University of Toronto

Outline

- Motivation
- Previous Limits (CMS)
- Analysis Description
 - Event Selection
 - Background Calculation
 - Systematics
- Results
- Summary

Motivation

- Vector-like quarks \rightarrow Colour gauge, spin-1/2, left- and righthanded chiralities transform similarly under SM gauge groups
 - VLQ mass not from Higgs \rightarrow Unconstrained by existing Higgs coupling measurements \rightarrow only surviving massive quark model
- Quadratic divergences in Higgs mass "naturally" cancelled out by additional VLQ diagrams
 - Useful tool in many BSM models (ex. Little/Composite Higgs, GUTs)
- Four possible VLQs: X, T, B, Y

ATLAS

- Full Run 2 dataset: 139 fb⁻¹ (Data taking period 2015 2019)
- √s = 13 TeV

Analysis Outline

- Single production overtakes pair production at higher mass
 - For T, occurs at m > 700 GeV
- Phase space:
 - VLQ mass (1.0 to 2.3 TeV)
 - Coupling to SM (κ) (0.1 to 1.6)

- T \rightarrow Ht (Asymptotic limit BR = 0.25°)
 - H \rightarrow bb, t \rightarrow qq'b
 - Previous search:

CMS Collaboration, "Search for electroweak production of a vector-like T quark using fully hadronic final states," JHEP, vol. 01, p. 036, 2020.

arXiv:1306.0572 [hep-ph]

Previous Limits (CMS)

35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) d(pp → (tH+tZ)bq) [pb] σ(pp → (tH+tZ)bq) [pb] CMS Singlet T model, $\Gamma/m_{T} = 0.01$ 10 Singlet T model Singlet T model, $\Gamma/m_{T} = 0.05$ Observed 95% CL upper limit Observed 95% CL upper limit Expected 95% CL upper limit Expected 95% CL upper limit 68% expected 68% expected 95% expected 95% expected pp \rightarrow (tH+tZ)bq, Γ/m_T = 0.1 pp \rightarrow (tH+tZ)bq, $\Gamma/m_T \leq 0.05$ The previous all-10⁻¹ 10hadronic search by CMS was unable to 10⁻² 10^{-2} exclude higher mass 0.8 0.8 1.2 1.2 1.8 1.6 1.8 1.4 1.6 ranges (>1.28 TeV) m_τ [TeV] m_T [TeV] for models with Γ/m_{τ} 35.9 fb⁻¹ (13 TeV) 35.9 fb⁻¹ (13 TeV) $\sigma(pp \rightarrow (tH+tZ)bq) [pb]$ $\sigma(pp \rightarrow (tH+tZ)bq) [pb]$ up to 0.3 10 **CMS** CMS 10╞ Singlet T model Singlet T model Observed 95% CL upper limit Observed 95% CL upper limit Expected 95% CL upper limit Expected 95% CL upper limit 68% expected 68% expected 95% expected 95% expected pp \rightarrow (tH+tZ)bq, $\Gamma/m_{T} = 0.2$ pp \rightarrow (tH+tZ)bq, $\Gamma/m_T = 0.3$ 10 10 10⁻² 10⁻² 1.2 1.8 1.2 0.8 1.4 1.6 8.0 1.4 1.6 1.8 1 arXiv:1909.04721 [hep-ex] m_T [TeV] m_T [TeV]

Event Selection

- Lepton veto
- 2 large-R jets (2 body decay from massive (>1 TeV) object means decay products are "boosted")
 - High p_{T} requirements (>500 GeV, >350 GeV)
 - Mass requirement of 100 225 GeV for each

Tagging Algorithms

- Top: Deep Neural Net tagger at 80% W.P.
 - Explicit mass window of 140 225 GeV
- Higgs: Mass window + τ_{21} jet substructure cut
 - Mass window is 100 140 GeV
- B-tag: Deep Neural Net tagger (DL1) at 70% W.P. using Variable Radius track jets

Both diagrams correspond to a large-R jet which is top-tagged with one b-tagged subjet.

arXiv:2201.07045 [hep-ex]

Background

- Background events can be considered as one of two categories:
 - Multi-jet background; the main contributor
 - Use data-driven ABCD method to estimate
 - Top-related Standard Model backgrounds
 - These are: ttbar, tt+W/Z/H, single top
 - Estimated using Powheg+Pythia8 MC

Region	<i>tī</i> Normalization Post-Fit			0	Ht Signal Region Post-Fit		
$t\bar{t}$ all-hadronic	8366	±	216	147	±	17	
<i>tt</i> non-all-hadronic	189	±	133	14	±	10	
Single top-quark	92	±	49	8	±	6	
$t\bar{t}+W/Z/H$	117	±	25	9	±	2	
Multijet events	1452	±	57	316	±	9	
Signal events ($m_T = 1.6$ TeV, $\kappa_T = 0.5$)				-9	±	21	
Predicted background	10216	±	150	494	±	22	
Data (139 fb ⁻¹)	10231			471			

arXiv:2201.07045 [hep-ex]

Signal Fitting

- Signal Region: 1 top + >1 b, 1 Higgs + >2 b
- All-hadronic decay channel -> reconstruct the VLQ candidate mass (dijet invariant mass distribution)
 - Fitted using binned profile-likelihood fit function to search for a mass resonance

 Signal samples with mass points range from 1.0 to 2.3 TeV in 100 GeV steps

- Coupling parameter κ from 0.1 to 0.5 in 0.05 steps, 0.5 to 1.6 in 0.10 steps
- Limits are set using the CL(s) method to determine 95% Confidence Level on the upper limit of signal strength

Upper Limit vs. Mass for κ = 0.5 (left) and κ = 1.1 (right)

- 2D Limit plot for к vs. Mass
- Regions above the observed limit are excluded

- Branching fraction of T -> Ht versus width-to-mass ratio Γ/m_{τ}
- Observed Limit (left) and Expected Limit (right)

Summary

- Models with following parameters excluded at 95% C.L.:
 - $\kappa > 0.5$ and m < 1.48 TeV, rising to $\kappa > 1.1$ for m < 1.82 TeV
 - κ > 1.6 and m < 2.2 TeV
 - κ > 0.35 with 1.1 < m < 1.35 TeV, with excluded κ region increasing at higher m, e.g. κ > 1.2 excluded for m < 2.0
- Not sensitive to low κ region, improvements can be made here for future analyses

Current Status

- First of many ATLAS VLQ searches using Full Run 2 data
 - A VLQ combination analysis is planned when more searches are completed
 - − Ht/Zt + X (1-lepton), B → H(bb)b, B → H(γγ)b, Z(νν)t + X, T/Y → Wb, OS ML (pair + single), TT → Wb + X, TT → BSM, VLQ E6 pair to HqZq
- Submitted to PRD, published May 25, 2022
 - Phys. Rev. D **105**, 092012
 - arXiv:2201.07045 [hep-ex]

All-had ttbar Background

- Iterative formula for α defined (used in ABCD calculation): $\alpha_{n+1} = \frac{N_{\text{Data}} - N_{\text{Multijet},n} - N_{\text{top-related}}}{N_{t\bar{t}} MC}$
- Value from iteration is $\alpha = 0.814 + -0.01$ (stat.)
- Then floated as a fit parameter in TRexFitter
- Fit to data value is $\alpha = 0.80 \pm 0.01$ (stat.) ± 0.12 (syst.)
 - Systematic uncertainty from constraining *α* with modelling/detector systematics

Analysis Regions

	1t 0H ≥2b				VR8		NR		SR	NR
ate	0t 1H ≥2b			VR6			SR			SR
Second-leading large-R jet tagging state	0t 0H ≥2b									
t tago	1t 0H 1b						NR		SR	NR
e-R je	0t 1H 1b						VR1			
large	0t 0H 1b						VR2			VR7
ading	1t 0H 0b						VR3		VR5	
ond-le	0t 1H 0b						VR4			
Seco	0t 0H 0b									
		Ot OH Ob	0t 1H 0b	1t 0H 0b	0t 0H 1b	0t 1H 1b	1t 0H 1b	0t 0H ≥2b	0t 1H ≥2b	1t 0H ≥2b

Leading large-R jet tagging state

arXiv:2201.07045 [hep-ex]

20

ABCD Calculation Method

- Subtract all MC estimated backgrounds from data before calculation, leaving only multi-jet
- 1st order ABCD (assume no correlations) e.g. B = (D*A)/C
- Then correlations:
 - In principle, 6 correlation factors (e.g. 1t1b, 1H2b)
 - 1t vs 1b, 1t vs 1H, 1t vs 2b
 - 1H vs 2b, 1H vs 1b
 - 1b vs 2b
- Correlations are calculated from data
- All of this (ABCD + Correlations) are done bin-by-bin

А	В
С	D

Systematics

Systematic uncertainties arising from the fit

• For $m_{T} = 1.6$ TeV, $\kappa_{T} = 0.5$

> Similar uncertainties for different mass and kappa hypotheses

Category	Uncertainty in $\sigma (pp \rightarrow T + X \rightarrow Ht + X)$ [fb]
Detector	r Uncertainties
<i>b</i> -jet tagging	6.1
Top-quark jet tagging	5.9
Jet mass resolution	3.0
Jet mass scale	2.3
Jet energy scale	1.8
Jet energy resolution	1.7
Higgs-boson tagging	1.6
Other detector uncertainties	0.3
Modelin	g Uncertainties
Other <i>tt</i> modeling uncertainties	4.9
$t\bar{t}$ parton shower and hadronization	1.9
$t\bar{t}$ matrix element	2.4
Background uncertainty	7.3
Signal MC statistical uncertainty	4.9
$t\bar{t}$ normalization (α^{fit})	1.5
Other top-quark-background theory uncertainti	es 1.8
Total	Uncertainties
Total statistical uncertainty	19
Total systematic uncertainty	15
Total uncertainty	25