Search for Single Production of a Vector-like T Quark Decaying into a Higgs Boson and Top Quark with Fully Hadronic Final States using the ATLAS Detector

Joel Foo
University of Toronto

Outline

- Motivation
- Previous Limits (CMS)
- Analysis Description
- Event Selection
- Background Calculation
- Systematics
- Results
- Summary

Motivation

- Vector-like quarks \rightarrow Colour gauge, spin-½, left- and righthanded chiralities transform similarly under SM gauge groups
- VLQ mass not from Higgs \rightarrow Unconstrained by existing Higgs coupling measurements \rightarrow only surviving massive quark model
- Quadratic divergences in Higgs mass "naturally" cancelled out by additional VLQ diagrams
- Useful tool in many BSM models (ex. Little/Composite Higgs, GUTs)
- Four possible VLQs: X, T, B, Y
- Focused on T, the VLQ analog to SM top

Q [e]	singlets	VLQs doublets	triplets
5/3		(X	(X
- $2 / 3$		$(-\bar{T})^{--} \bar{T}{ }^{-}$	$\bar{T})^{-} \bar{T}$
-1/3	(\bar{B})	(\bar{B})	$(\bar{B})^{--} \bar{B}$
-4/3			$\cdots{ }^{-}$

arXiv:hep-ph/0502182

ATLAS

- Full Run 2 dataset: $139 \mathrm{fb}^{-1}$ (Data taking period 2015 - 2019)
- $\sqrt{ } \mathrm{s}=13 \mathrm{TeV}$

Analysis Outline

- Single production overtakes pair production at higher mass
- For T, occurs at m>700 GeV
- Phase space:
- VLQ mass (1.0 to 2.3 TeV)
- Coupling to SM (к) (0.1 to 1.6)

- H \rightarrow bb, $t \rightarrow q q^{\prime} b$
- Previous search:

CMS Collaboration, "Search for electroweak production of a vector-like T quark using fully hadronic final states," JHEP, vol. 01, p. 036, 2020.

Previous Limits (CMS)

The previous allhadronic search by CMS was unable to exclude higher mass ranges (>1.28 TeV) for models with $\Gamma / \mathrm{m}_{\mathrm{T}}$ up to 0.3
arXiv:1909.04721 [hep-ex]

$35.9 \mathrm{fb}^{-1}(13 \mathrm{TeV})$

$35.9 \mathrm{fb}^{-1}(13 \mathrm{TeV})$

$35.9 \mathrm{fb}^{-1}(13 \mathrm{TeV})$

Event Selection

- Lepton veto
- 2 large-R jets (2 body decay from massive (>1 TeV) object means decay products are "boosted")
- High p_{T} requirements ($>500 \mathrm{GeV},>350 \mathrm{GeV}$)
- Mass requirement of $100-225 \mathrm{GeV}$ for each

arXiv:2201.07045 [hep-ex]

F.A. Dias: Searches for high-mass resonances at the LHC (2016)

Tagging Algorithms

- Top: Deep Neural Net tagger at 80\% W.P.
- Explicit mass window of $140-225 \mathrm{GeV}$
- Higgs: Mass window $+\tau_{21}$ jet substructure cut
- Mass window is $100-140 \mathrm{GeV}$
- B-tag: Deep Neural Net tagger (DL1) at 70\% W.P. using Variable Radius track jets

Leading subjet mass in leading large-R jet [GeV]

Both diagrams correspond to a large-R jet which is top-tagged with one b-tagged subjet.

Background

- Background events can be considered as one of two categories:
- Multi-jet background; the main contributor
- Use data-driven ABCD method to estimate
- Top-related Standard Model backgrounds
- These are: ttbar, tt+W/Z/H, single top
- Estimated using Powheg+Pythia8 MC

Region	\bar{t}Normalization Post-Fit			$H t$ Signal Region		
	Post-Fit					
\bar{t} all-hadronic	8366	\pm	216	147	\pm	17
$t \bar{t}$ non-all-hadronic	189	\pm	133	14	\pm	10
Single top-quark	92	\pm	49	8	\pm	6
$\bar{t}+W / Z / H$	117	\pm	25	9	\pm	2
Multijet events	1452	\pm	57	316	\pm	9
Signal events $\left(m_{T}=1.6 \mathrm{TeV}, \kappa_{T}=0.5\right)$				-9	\pm	21
Predicted background	10216	\pm	150	494	\pm	22
Data $\left(139 \mathrm{fb}^{-1}\right)$	10231			471		

Signal Fitting

- Signal Region: 1 top + >1 b, 1 Higgs + >2 b
- All-hadronic decay channel -> reconstruct the VLQ candidate mass (dijet invariant mass distribution)
- Fitted using binned profile-likelihood fit function to search for a mass resonance

$$
\begin{aligned}
& \mathcal{L}(\mu, \hat{\theta} ; S, B, n, h)=\prod_{i=1}^{N_{b}} \operatorname{Poiss}\left(n_{i} ; \mu S_{i}+B_{i}\right) \cdot \operatorname{Poiss}\left(h_{i} ; \gamma_{i}\right) \prod_{j=1}^{N_{p}} \operatorname{Gauss}\left(\theta_{j}, \sigma_{j}\right)
\end{aligned}
$$

Limits

- Signal samples with mass points range from 1.0 to 2.3 TeV in 100 GeV steps
- Coupling parameter к from 0.1 to 0.5 in 0.05 steps, 0.5 to 1.6 in 0.10 steps
- Limits are set using the CL(s) method to determine 95\% Confidence Level on the upper limit of signal strength

Limits

- Upper Limit vs. Mass for к = 0.5 (left) and к = 1.1 (right)

arXiv:2201.07045 [hep-ex]

Limits

- 2D Limit plot for k vs. Mass
- Regions above the observed limit are excluded

Limits

- Branching fraction of T -> Ht versus width-to-mass ratio $\Gamma / \mathrm{m}_{\mathrm{T}}$
- Observed Limit (left) and Expected Limit (right)

ATLAS

All-hadronic $\mathrm{T} \rightarrow \mathrm{Ht}$
$\sqrt{s}=13 \mathrm{TeV}, 139 \mathrm{fb}^{-1}$

ATLAS
$\sqrt{\mathrm{s}}=13 \mathrm{TeV}, 139 \mathrm{fb}^{-1}$

Summary

- Models with following parameters excluded at 95\% C.L.:
- к >0.5 and $m<1.48 \mathrm{TeV}$, rising to $\kappa>1.1$ for $m<1.82 \mathrm{TeV}$
- $\mathrm{k}>1.6$ and $\mathrm{m}<2.2 \mathrm{TeV}$
- $\kappa>0.35$ with $1.1<\mathrm{m}<1.35 \mathrm{TeV}$, with excluded k region increasing at higher m , e.g. к >1.2 excluded for $\mathrm{m}<2.0$
- Not sensitive to low к region, improvements can be made here for future analyses

Current Status

- First of many ATLAS VLQ searches using Full Run 2 data
- A VLQ combination analysis is planned when more searches are completed
- Ht/Zt + X (1-lepton), B $\rightarrow \mathrm{H}(\mathrm{bb}) \mathrm{b}, \mathrm{B} \rightarrow \mathrm{H}(\mathrm{yy}) \mathrm{b}, \mathrm{Z}(\mathrm{vv}) \mathrm{t}+\mathrm{X}$, $\mathrm{T} / \mathrm{Y} \rightarrow \mathrm{Wb}$, OS ML (pair + single), $\mathrm{TT} \rightarrow \mathrm{Wb}+\mathrm{X}, \mathrm{TT} \rightarrow \mathrm{BSM}$, VLQ E6 pair to HqZq
- Submitted to PRD, published May 25, 2022
- Phys. Rev. D 105, 092012
- arXiv:2201.07045 [hep-ex]

Backup

All-had ttbar Background

- Iterative formula for α defined (used in ABCD calculation):

$$
\alpha_{n+1}=\frac{N_{\text {Data }}-N_{\text {Multijet }, n}-N_{\text {top-related }}}{N_{t \bar{t} M C}}
$$

- Value from iteration is $\alpha=0.814+/-0.01$ (stat.)
- Then floated as a fit parameter in TRexFitter
- Fit to data value is $\alpha=0.80 \pm 0.01$ (stat.) ± 0.12 (syst.)
- Systematic uncertainty from constraining α with modelling/detector systematics

Analysis Regions

Leading large- R jet tagging state

ABCD Calculation Method

- Subtract all MC estimated backgrounds from data before calculation, leaving only multi-jet
- $1^{\text {st }}$ order $A B C D$ (assume no correlations) e.g. $B=(D * A) / C$
- Then correlations:
- In principle, 6 correlation factors (e.g. 1t1b, 1H2b)
- 1t vs 1b, 1t vs 1H, 1t vs 2b
- 1 H vs $2 \mathrm{~b}, 1 \mathrm{H}$ vs 1 b
- 1b vs $2 b$
- Correlations are calculated from data
- All of this (ABCD + Correlations) are done bin-by-bin

Systematics

- Systematic

 uncertainties arising from the fit- For $\mathrm{m}_{\mathrm{T}}=1.6 \mathrm{TeV}$, $\mathrm{K}_{\mathrm{T}}=0.5$

Similar uncertainties for different mass and kappa hypotheses

Category	Uncertainty in $\sigma(p p \rightarrow T+X \rightarrow H t+X)[\mathrm{fb}]$	
	Detector Uncertainties	
b-jet tagging	6.1	
Top-quark jet tagging		5.9
Jet mass resolution	3.0	
Jet mass scale	2.3	
Jet energy scale	1.8	
Jet energy resolution	1.7	
Higgs-boson tagging	1.6	
Other detector uncertainties		0.3
Other $t \bar{t}$ modeling uncertainties		4.9
$t \bar{t}$ parton shower and hadronization		1.9
$t \bar{t}$ matrix element		2.4
Background uncertainty	7.3	
Signal MC statistical uncertainty		4.9
\bar{t} normalization $(\alpha$ fit $)$	1.5	
Other top-quark-background theory uncertainties	1.8	
	Total Uncertainties	
Total statistical uncertainty	19	
Total systematic uncertainty		15
Total uncertainty	25	
		arXiv:2201.07045 [hep-ex]

