

Measuring Light Distribution of LED Sources for HyperK

NICHOLAS BOOTH

CAP Congress 2022

TRIUMF: Mark Hartz, Michael Sekatchev

University of Victoria: Dean Karlen

Neutrinos and Hyper-Kamiokande

- Neutrinos only interact through the weak force
- There are multiple potential flavour and mass states, and a neutrino particle can oscillate between the various states.
- The Hyper-Kamiokande (HyperK) experiment employs water-Cherenkov detectors to study this phenomenon.

Standard Model of Elementary Particles

HyperK's Intermediate Detector

- The Intermediate Water-Cherenkov Detector (IWCD) is a close-to-source detector of much smaller volume than the main HyperK tank.
- Will be lined with mPMTs that will reconstruct the interaction vertex and other properties of events
- Due to small size, high timing precision and photogrammetry are necessary for vertex reconstruction

Purpose - LEDs for Calibration

- 13 calibration LEDs beneath sealed dome; powered and controlled by interior electronics
- 12 directional LEDs for photogrammetry
- 1 pulsed LED for timing calibration

*** TRIUMF**

Purpose - LEDs for Calibration

- Light transported from LEDs below PMTs to surface of dome by light guides and emitted through attached lens
- Must fully quantify the affect of lens and light guide on calibration light

Camera

University of Victoria

Theory – Brightness from 2D image

P = (x, y, d)

Ø

- Camera, source, and origin of target plane are all on-axis
- d = the distance from the source to the origin of the target plane

X

Source

- Relate pixel brightness to incoming polar angle θ
 - Each pixel has corresponding (x, y) coordinates
 - Convert from Cartesian to Spherical to determine θ
- Plot brightness vs polar angle to determine distribution

Experimental Set-up

RIUMF

University of Victoria

Data Collection

- The LED source is moved further away from target plane for each trial. Angular distribution should be constant as the physical source is not changing.
- Each set of trials requires a calibration photograph with known cartesian coordinates to convert to and from pixel coordinates.

Calibration Technique

Step 1 – Locate all circles • Uses Hough Circles

Step 2 – Define CornersRough pixel location found via Paint

Step 3 – Define Known Circles

Step 4 – Interpolate between Knowns

Uses LinearNDInterpolater

Step 5 – Convert Pixel to True Coordinates

Calibration Technique

Step 1 – Locate all circles • Uses Hough Circles

Step 2 – Define CornersRough pixel location found via Paint

Step 3 – Define Known Circles

Step 4 – Interpolate between Knowns

Uses LinearNDInterpolater

Step 5 – Convert Pixel to True Coordinates

Calibration Technique

Step 1 – Locate all circles • Uses Hough Circles

Step 2 – Define CornersRough pixel location found via Paint

Step 3 – Define Known Circles

Step 4 – Interpolate between Knowns

Uses LinearNDInterpolater

Step 5 – Convert Pixel to True Coordinates

Analysis Technique

*** TRIUMF**

Counts

- Isolate Full Width at Half
 Maximum
- Approximate isolated data as Gaussian
- Fit Gaussians to each data set
- Extract centres of Gaussian as the pixel coordinates of the centre of the light distribution

Simulation Results

RIUMF

University of Victoria

Example Test Results : d = 5 in

Looking Forward

- Create more stable lens stand
- Remove background light contribution
- Model angular distribution in both cos(theta) and phi
- Pass information to full simulation of IWCD tank

Questions?

Thank you! Merci!