

Near-Infrared Photobiomodulation of Living Cells, Tubulin, and Microtubules *In Vitro*

Michael Staelens (staelens@ualberta.ca), Ph.D.

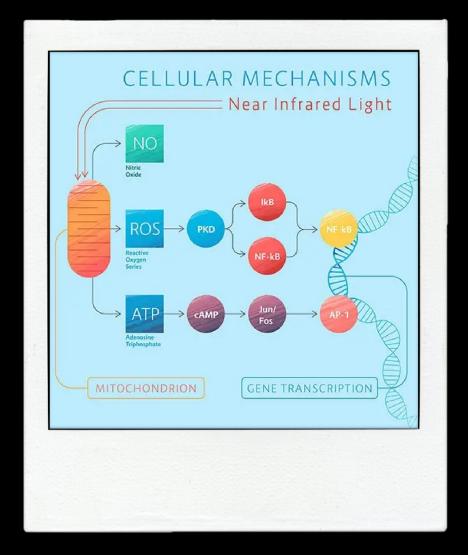
Department of Physics, University of Alberta

1

Near-Infrared Photobiomodulation Therapy (PBMT)

A non-invasive method utilizing non-ionizing sources of low-intensity visible or near-infrared light to stimulate photochemical changes that can induce positive health benefits and treat symptoms associated with various conditions.

A non-invasive method utilizing non-ionizing sources of low-intensity visible or near-infrared light to stimulate photochemical changes that can induce positive health benefits and treat symptoms associated with various conditions.



- Accidentally discovered in 1967 by Endre Mester with a low-power ruby laser applied near tumour sites in mice, which resulted in hair growth & wound healing. Radiobiologia, Radiotherapia 9, 621–626 (1968); The American Journal of Surgery 122, 532--535 (1971)
- Originally referred to as low-level light/laser therapy (LLLT)
- Effects appear to depend greatly on the parameters & dosimetry used (e.g., spectral irradiance/power density, dose/fluence, wavelength, pulse rate)

A non-invasive method utilizing non-ionizing sources of low-intensity visible or near-infrared light to stimulate photochemical changes that can induce positive health benefits and treat symptoms associated with various conditions.

- Accidentally discovered in 1967 by Endre Mester with a low-power ruby laser applied near tumour sites in mice, which resulted in hair growth & wound healing. Radiobiologia, Radiotherapia 9, 621–626 (1968); The American Journal of Surgery 122, 532-535 (1971)
- Originally referred to as low-level light/laser therapy (LLLT)
- Effects appear to depend greatly on the parameters & dosimetry used (e.g., spectral irradiance/power density, dose/fluence, wavelength, pulse rate)

Alzheimer's Disease:

Alzheimer's Disease:

• Significant improvement in patients with mild to moderately severe dementia: better sleep, less anxiety, and increased function were reported, with no negative side effects. Photobiomodulation, Photomedicine, and Laser Surgery **35**(8), 432–441 (2017)

Alzheimer's Disease:

- Significant improvement in patients with mild to moderately severe dementia: better sleep, less anxiety, and increased function were reported, with no negative side effects. Photobiomodulation, Photomedicine, and Laser Surgery **35**(8), 432–441 (2017)
- Home PBM treatments were found to improve ADAS-Cog scores by a larger amount than that reported in pharmacological trials w/ donepezil (10 mg/day). Photobiomodulation, Photomedicine, and Laser Surgery **37**(3), 133–141 (2019)

Alzheimer's Disease:

- Significant improvement in patients with mild to moderately severe dementia: better sleep, less anxiety, and increased function were reported, with no negative side effects. Photobiomodulation, Photomedicine, and Laser Surgery **35**(8), 432–441 (2017)
- Home PBM treatments were found to improve ADAS-Cog scores by a larger amount than that reported in pharmacological trials w/ donepezil (10 mg/day). Photobiomodulation, Photomedicine, and Laser Surgery **37**(3), 133–141 (2019)

Parkinson's Disease:

Alzheimer's Disease:

- Significant improvement in patients with mild to moderately severe dementia: better sleep, less anxiety, and increased function were reported, with no negative side effects. Photobiomodulation, Photomedicine, and Laser Surgery **35**(8), 432–441 (2017)
- Home PBM treatments were found to improve ADAS-Cog scores by a larger amount than that reported in pharmacological trials w/donepezil (10 mg/day). Photobiomodulation, Photomedicine, and Laser Surgery **37**(3), 133–141 (2019)

Parkinson's Disease:

• In a proof-of-concept study, measures of cognition, mobility, dynamic balance, and fine motor skill were significantly improved (p < 0.05) with PBM treatment for 12 weeks. BMC Neurology **21**, 256 (2021)

NIR PBM of Cells, Tubulin & MTs

12

Alzheimer's Disease:

- Significant improvement in patients with mild to moderately severe dementia: better sleep, less anxiety, and increased function were reported, with no negative side effects. Photobiomodulation, Photomedicine, and Laser Surgery **35**(8), 432–441 (2017)
- Home PBM treatments were found to improve ADAS-Cog scores by a larger amount than that reported in pharmacological trials w/ donepezil (10 mg/day). Photobiomodulation, Photomedicine, and Laser Surgery **37**(3), 133–141 (2019)

Parkinson's Disease:

• In a proof-of-concept study, measures of cognition, mobility, dynamic balance, and fine motor skill were significantly improved (p < 0.05) with PBM treatment for 12 weeks. BMC Neurology **21**, 256 (2021)

Traumatic Brain Injury & Concussion:

NIR PBM of Cells, Tubulin & MTs

13

Alzheimer's Disease:

- Significant improvement in patients with mild to moderately severe dementia: better sleep, less anxiety, and increased function were reported, with no negative side effects. Photobiomodulation, Photomedicine, and Laser Surgery **35**(8), 432–441 (2017)
- Home PBM treatments were found to improve ADAS-Cog scores by a larger amount than that reported in pharmacological trials w/donepezil (10 mg/day). Photobiomodulation, Photomedicine, and Laser Surgery **37**(3), 133–141 (2019)

Parkinson's Disease:

• In a proof-of-concept study, measures of cognition, mobility, dynamic balance, and fine motor skill were significantly improved (p < 0.05) with PBM treatment for 12 weeks. BMC Neurology **21**, 256 (2021)

Traumatic Brain Injury & Concussion:

• A single concussion case study found positive changes in behavioural and neuroimaging measures (e.g., increased cerebral perfusion) after 8 weeks of home PBM treatments. Frontiers in Neurology **11**, 952 (2020)

Vielight Neuro Alpha Brain PBM Device *Transcranial-Intranasal NIR PBM*

Vielight Neuro Alpha Brain PBM Device *Transcranial-Intranasal NIR PBM*

Parameter	Value (Intranasal)	Value (Transcranial)
Light source	810 nm LED × 1	810 nm LED \times 4 (3 posterior, 1 anterior)
LED output power	25 mW	100 mW (posterior) and 75 mW (anterior)
LED pulse frequency	10 Hz	10 Hz
Pulse duty cycle	50%	50%
Beam spot-size	\sim 1 cm 2	$\sim 1 \text{ cm}^2$
LED power density	25 mW/cm ²	100 mW/cm ² (posterior) and 75 mW/cm ² (anterior)
Application time (default)	20 min	20 min
$E_{\rm Net}$ delivered (per LED)	15 J	60 J (posterior) and 45 J (anterior)
Net energy dose (per LED)	15 J/cm ²	60 J/cm ² (posterior) and 45 J/cm ² (anterior)

Table of Device Parameters

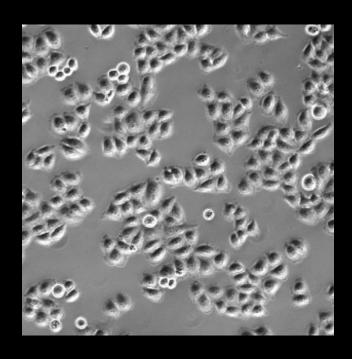
Vielight Neuro Alpha Brain PBM Device

Transcranial-Intranasal NIR PBM

Parameter	Value (Intranasal)	Value (Transcranial)
Light source	810 nm LED × 1	810 nm LED \times 4 (3 posterior, 1 anterior)
LED output power	25 mW	100 mW (posterior) and 75 mW (anterior)
LED pulse frequency	10 Hz	10 Hz
Pulse duty cycle	50%	50%
Beam spot-size	\sim 1 cm 2	$\sim 1 \text{ cm}^2$
LED power density	25 mW/cm ²	100 mW/cm ² (posterior) and 75 mW/cm ² (anterior)
Application time (default)	20 min	20 min
$E_{\rm Net}$ delivered (per LED)	15 J	60 J (posterior) and 45 J (anterior)
Net energy dose (per LED)	15 J/cm ²	60 J/cm ² (posterior) and 45 J/cm ² (anterior)

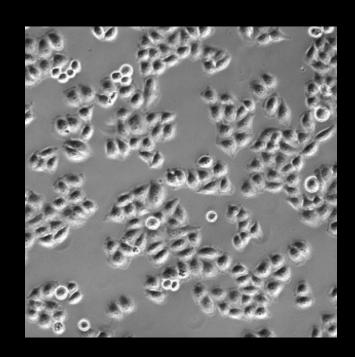
Table of Device Parameters

 Proprietary LEDs used produce non-thermal, non-ionizing, and incoherent radiation

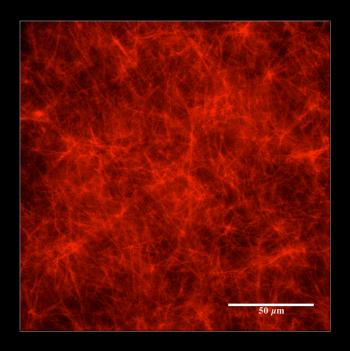

LEDs target the DMN (disrupted in Alzheimer's cases)

Low-level NIR photons have been shown to be able to penetrate the skull (both ex vivo & in silico)

NIR PBM of Cells, Tubulin & MTs $oldsymbol{1}$

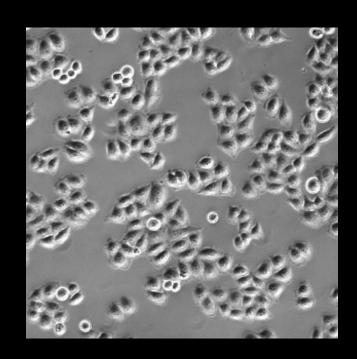

Probing the Effects on Cells & Cellular Components

Probing the Effects on Cells & Cellular Components

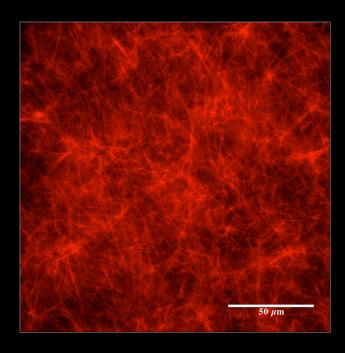

Living Cells (HeLa & U251) *Ionic Conductivity Measurements*

Probing the Effects on Cells & Cellular Components

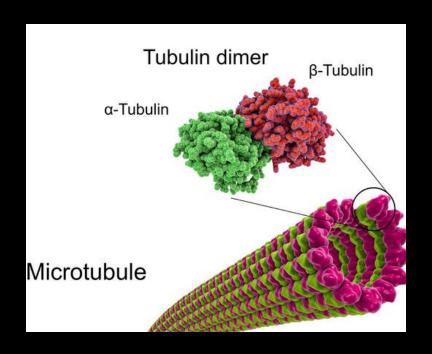
Living Cells (HeLa & U251)


Ionic Conductivity Measurements

Microtubules in Buffer Solutions


Fluorescence Microscopy Analysis

Probing the Effects on Cells & Cellular Components


Living Cells (HeLa & U251)

Ionic Conductivity Measurements

Microtubules in Buffer Solutions

Fluorescence Microscopy Analysis

Tubulin in Buffer Solutions

Turbidity Measurements

2

NIR PBM—Experiment 1:

Living Cells

Cell Cultures:

Cell Cultures:

• HeLa (human cervical cancer cell line) & U251 cells (human glioblastoma cell line)

Cell Cultures:

- HeLa (human cervical cancer cell line) & U251 cells (human glioblastoma cell line)
- Cells were cultured in high glucose DMEM, 5% FBS, and antibiotics (penicillin & streptomycin)

Cell Cultures:

- HeLa (human cervical cancer cell line) & U251 cells (human glioblastoma cell line)
- Cells were cultured in high glucose DMEM, 5% FBS, and antibiotics (penicillin & streptomycin)
- All cells were cultured at 37 °C with 5% CO2

Cell Cultures:

- HeLa (human cervical cancer cell line) & U251 cells (human glioblastoma cell line)
- Cells were cultured in high glucose DMEM, 5% FBS, and antibiotics (penicillin & streptomycin)
- All cells were cultured at 37 °C with 5% CO2

Exposures and Ionic Conductivity Measurements:

Cell Cultures:

- HeLa (human cervical cancer cell line) & U251 cells (human glioblastoma cell line)
- Cells were cultured in high glucose DMEM, 5% FBS, and antibiotics (penicillin & streptomycin)
- All cells were cultured at 37 °C with 5% CO2

Exposures and Ionic Conductivity Measurements:

• On the day of exposure, cells were set up at ~60–80% confluence

Cell Cultures:

- HeLa (human cervical cancer cell line) & U251 cells (human glioblastoma cell line)
- Cells were cultured in high glucose DMEM, 5% FBS, and antibiotics (penicillin & streptomycin)
- All cells were cultured at 37 °C with 5% CO2

Exposures and Ionic Conductivity Measurements:

- On the day of exposure, cells were set up at ~60–80% confluence
- We use an additional experimental device, namely, the inovitro live system by Novocure Ltd.

Cell Cultures:

- HeLa (human cervical cancer cell line) & U251 cells (human glioblastoma cell line)
- Cells were cultured in high glucose DMEM, 5% FBS, and antibiotics (penicillin & streptomycin)
- All cells were cultured at 37 °C with 5% CO2

Exposures and Ionic Conductivity Measurements:

- On the day of exposure, cells were set up at ~60–80% confluence
- We use an additional experimental device, namely, the inovitro live system by Novocure Ltd.
- The system generates intermediate-frequency (50–500 kHz) alternating EFs w/low intensity (so-called, tumour-treating fields or TTFields, known to hinder CC div.)

Cell Cultures:

- HeLa (human cervical cancer cell line) & U251 cells (human glioblastoma cell line)
- Cells were cultured in high glucose DMEM, 5% FBS, and antibiotics (penicillin & streptomycin)
- All cells were cultured at 37 °C with 5% CO2

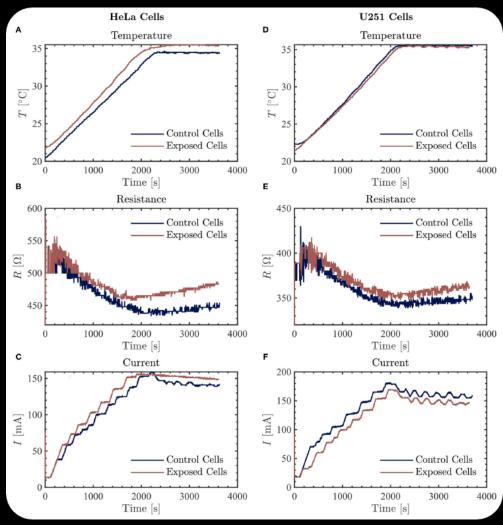
Exposures and Ionic Conductivity Measurements:

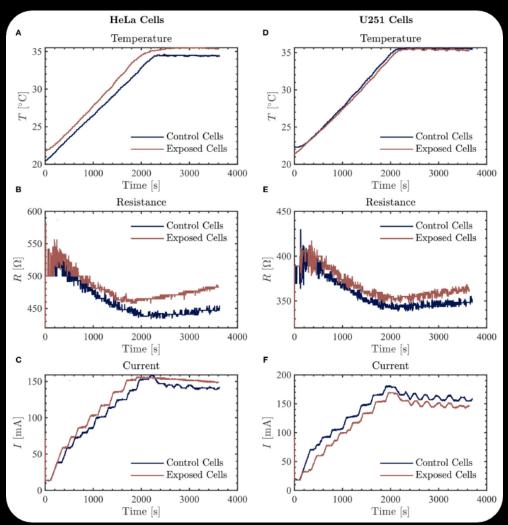
- On the day of exposure, cells were set up at ~60–80% confluence
- We use an additional experimental device, namely, the inovitro live system by Novocure Ltd.
- The system generates intermediate-frequency (50–500 kHz) alternating EFs w/low intensity (so-called, tumour-treating fields or TTFields, known to hinder CC div.)
- We investigated the effect of the Vielight LED applicator alongside two different frequencies of TTFields, 50 and 100 kHz

Cell Cultures:

- HeLa (human cervical cancer cell line) & U251 cells (human glioblastoma cell line)
- Cells were cultured in high glucose DMEM, 5% FBS, and antibiotics (penicillin & streptomycin)
- All cells were cultured at 37 °C with 5% CO2

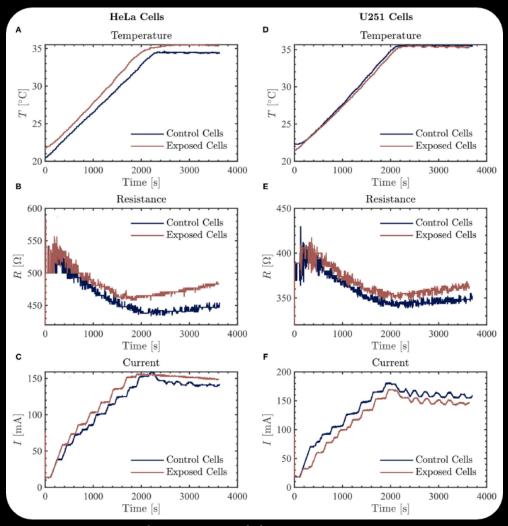
Exposures and Ionic Conductivity Measurements:


- On the day of exposure, cells were set up at ~60–80% confluence
- We use an additional experimental device, namely, the inovitro live system by Novocure Ltd.
- The system generates intermediate-frequency (50–500 kHz) alternating EFs w/low intensity (so-called, tumour-treating fields or TTFields, known to hinder CC div.)
- We investigated the effect of the Vielight LED applicator alongside two different frequencies of TTFields, 50 and 100 kHz
- Measurements of T, R, and I are recorded every 3 s by the system


Conductivity Measurement Results

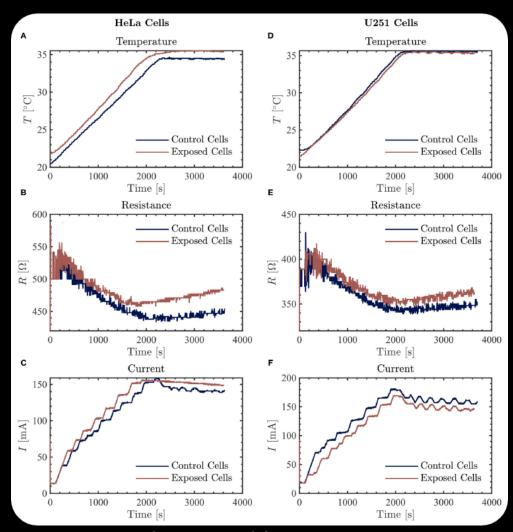
Conductivity Measurement Results

50 kHz TTFields & NIR PBM



50 kHz TTFields & NIR PBM

50 kHz TTFields & NIR PBM


Total exposure time was ~1 h

50 kHz TTFields & NIR PBM

Total exposure time was ~1 h

100 kHz TTFields & NIR PBM

Control Cells Control Cells Exposed Cells Exposed Cells 1000 2000 3000 1000 2000 3000 Time [s] Time [s] Resistance Resistance Control Cells — Control Cells Exposed Cells Exposed Cells 220 200 1000 2000 1000 2000 Time [s] Time [s] Current Current 150 [m] 100 [W] 100 Control Cells Exposed Cells Exposed Cells 1000 2000 3000 1000 3000 Time [s] Time [s]

U251 Cells

Temperature

HeLa Cells

Temperature

50 kHz TTFields & NIR PBM

Total exposure time was ~1 h

100 kHz TTFields & NIR PBM

Total exposure time was ~1 h

3

NIR PBM—Experiment 2:

Microtubules

Reconstitution of rhodamine-labeled MTs:

Reconstitution of rhodamine-labeled MTs:

1. Resuspend tubulin in ice-cold G-PEM buffer to a final tubulin concentration of 4 mg/ml (\simeq 36.4 μ M)

Reconstitution of rhodamine-labeled MTs:

- 1. Resuspend tubulin in ice-cold G-PEM buffer to a final tubulin concentration of 4 mg/ml (\simeq 36.4 μ M)
- 2. G-PEM buffer was prepared with GTP (100 mM stock) added to cold PEM buffer (aka BRB80) to a final GTP concentration of 1 mM

Reconstitution of rhodamine-labeled MTs:

- 1. Resuspend tubulin in ice-cold G-PEM buffer to a final tubulin concentration of 4 mg/ml (\simeq 36.4 μ M)
- 2. G-PEM buffer was prepared with GTP (100 mM stock) added to cold PEM buffer (aka BRB80) to a final GTP concentration of 1 mM
- 3. Cold G-PEM & microtubule cushion buffer (BRB80 diluted in 60% [v/v] glycerol), were both added to each labeled tubulin aliquot at a 4:1 ratio

Reconstitution of rhodamine-labeled MTs:

- 1. Resuspend tubulin in ice-cold G-PEM buffer to a final tubulin concentration of 4 mg/ml (\simeq 36.4 μ M)
- 2. G-PEM buffer was prepared with GTP (100 mM stock) added to cold PEM buffer (aka BRB80) to a final GTP concentration of 1 mM
- 3. Cold G-PEM & microtubule cushion buffer (BRB80 diluted in 60% [v/v] glycerol), were both added to each labeled tubulin aliquot at a 4:1 ratio

PBM Exposures:

Reconstitution of rhodamine-labeled MTs:

- 1. Resuspend tubulin in ice-cold G-PEM buffer to a final tubulin concentration of 4 mg/ml (\simeq 36.4 μ M)
- 2. G-PEM buffer was prepared with GTP (100 mM stock) added to cold PEM buffer (aka BRB80) to a final GTP concentration of 1 mM
- 3. Cold G-PEM & microtubule cushion buffer (BRB80 diluted in 60% [v/v] glycerol), were both added to each labeled tubulin aliquot at a 4:1 ratio

PBM Exposures:

1. Labeled tubulin aliquots were placed in a 37 °C water bath for 45 minutes to polymerize

Reconstitution of rhodamine-labeled MTs:

- 1. Resuspend tubulin in ice-cold G-PEM buffer to a final tubulin concentration of 4 mg/ml (\simeq 36.4 μ M)
- 2. G-PEM buffer was prepared with GTP (100 mM stock) added to cold PEM buffer (aka BRB80) to a final GTP concentration of 1 mM
- 3. Cold G-PEM & microtubule cushion buffer (BRB80 diluted in 60% [v/v] glycerol), were both added to each labeled tubulin aliquot at a 4:1 ratio

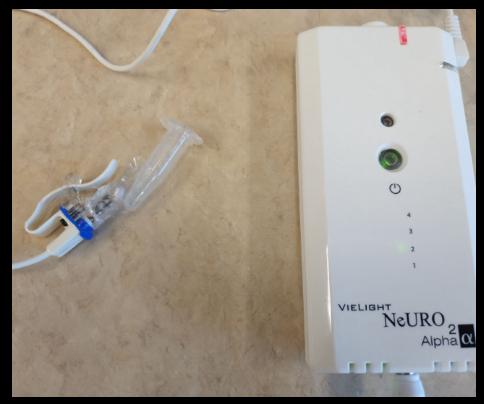
PBM Exposures:

- 1. Labeled tubulin aliquots were placed in a 37 °C water bath for 45 minutes to polymerize
- 2. After polymerization, the microtubules were stabilized with Taxol, i.e., paclitaxel (either 2 μ M, 4 μ M, or 20 μ M) a common chemotherapy drug

Reconstitution of rhodamine-labeled MTs:

- 1. Resuspend tubulin in ice-cold G-PEM buffer to a final tubulin concentration of 4 mg/ml (\simeq 36.4 μ M)
- 2. G-PEM buffer was prepared with GTP (100 mM stock) added to cold PEM buffer (aka BRB80) to a final GTP concentration of 1 mM
- 3. Cold G-PEM & microtubule cushion buffer (BRB80 diluted in 60% [v/v] glycerol), were both added to each labeled tubulin aliquot at a 4:1 ratio

PBM Exposures:

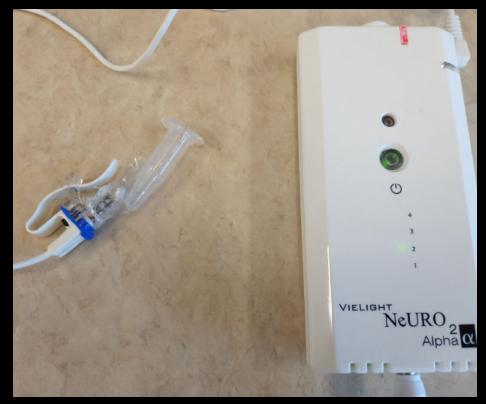

- 1. Labeled tubulin aliquots were placed in a 37 °C water bath for 45 minutes to polymerize
- 2. After polymerization, the microtubules were stabilized with Taxol, i.e., paclitaxel (either 2 μ M, 4 μ M, or 20 μ M) a common chemotherapy drug
- 3. MTs were exposed to the intranasal LED applicator of the device for 2 h

Reconstitution of rhodamine-labeled MTs:

- 1. Resuspend tubulin in ice-cold G-PEM buffer to a final tubulin concentration of 4 mg/ml (\approx 36.4 μ M)
- 2. G-PEM buffer was prepared with GTP (100 mM stock) added to cold PEM buffer (aka BRB80) to a final GTP concentration of 1 mM
- 3. Cold G-PEM & microtubule cushion buffer (BRB80 diluted in 60% [v/v] glycerol), were both added to each labeled tubulin aliquot at a 4:1 ratio

PBM Exposures:

- 1. Labeled tubulin aliquots were placed in a 37 °C water bath for 45 minutes to polymerize
- 2. After polymerization, the microtubules were stabilized with Taxol, i.e., paclitaxel (either 2 μ M, 4 μ M, or 20 μ M) a common chemotherapy drug
- 3. MTs were exposed to the intranasal LED applicator of the device for 2 h

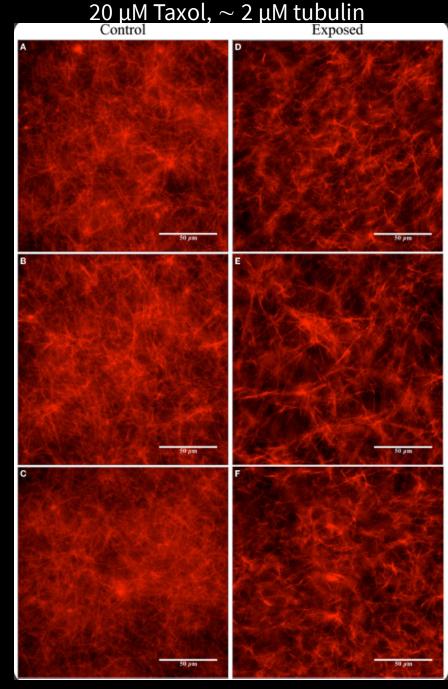

An example of one of the exposures (all performed at room temp)

Reconstitution of rhodamine-labeled MTs:

- 1. Resuspend tubulin in ice-cold G-PEM buffer to a final tubulin concentration of 4 mg/ml (\simeq 36.4 μ M)
- 2. G-PEM buffer was prepared with GTP (100 mM stock) added to cold PEM buffer (aka BRB80) to a final GTP concentration of 1 mM
- 3. Cold G-PEM & microtubule cushion buffer (BRB80 diluted in 60% [v/v] glycerol), were both added to each labeled tubulin aliquot at a 4:1 ratio

PBM Exposures:

- 1. Labeled tubulin aliquots were placed in a 37 °C water bath for 45 minutes to polymerize
- 2. After polymerization, the microtubules were stabilized with Taxol, i.e., paclitaxel (either 2 μ M, 4 μ M, or 20 μ M) a common chemotherapy drug
- 3. MTs were exposed to the intranasal LED applicator of the device for 2 h



An example of one of the exposures (all performed at room temp)

Fluorescence microscopy was performed on the samples after exposure.

20 μM Taxol:

20 μM Taxol:

20 μM Taxol:

- A small effect on MT polymerization seems to be present
- Notably, a lower total polymer mass appears to be remaining in the PBM-exposed group (N = 1)

20 μM Taxol, ~ 2 μM tubulin

20 μM Taxol:

- A small effect on MT polymerization seems to be present
- Notably, a lower total polymer mass appears to be remaining in the PBM-exposed group (N = 1)

2 μM Taxol:

• Control microtubules were depolymerizing and unstable at the time of imaging. No conclusions were drawn from these particular experiments.

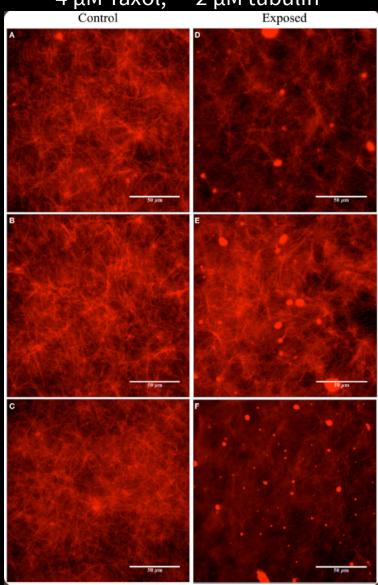
20 μM Taxol, ~ 2 μM tubulin Control Exposed

20 μM Taxol:

- A small effect on MT polymerization seems to be present
- Notably, a lower total polymer mass appears to be remaining in the PBM-exposed group (N = 1)

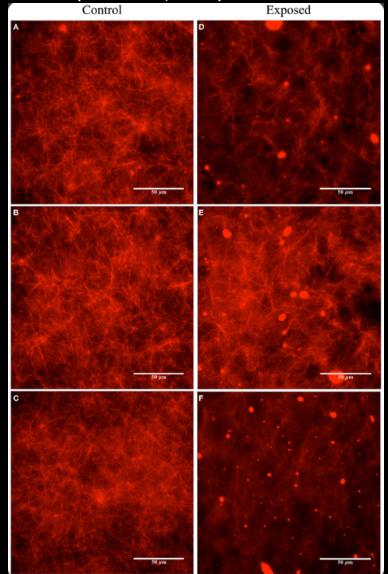
2 μM Taxol:

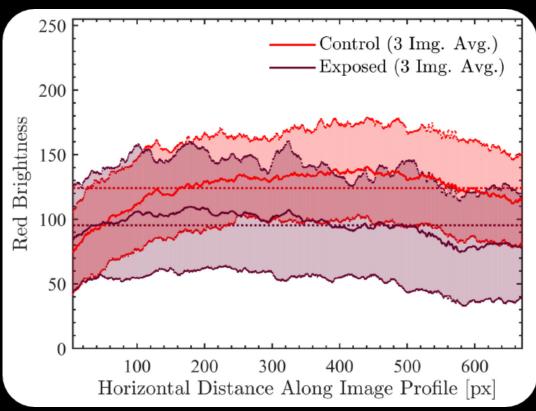
• Control microtubules were depolymerizing and unstable at the time of imaging. No conclusions were drawn from these particular experiments.


We used a Zeiss Axio Examiner.Z1 fluorescence microscope with a red fluorescent protein (RFP) filter set. Results were imaged with a Hamamatsu C9100 EMCCD camera.

20 μM Taxol, \sim 2 μM tubulin

Imaging Results 2 (4 μ M Taxol, $\mathcal{N}=3$)

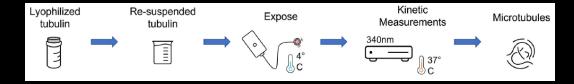

Imaging Results 2 (4 μ M Taxol, $\mathcal{N}=3$)


4 μ M Taxol, \sim 2 μ M tubulin

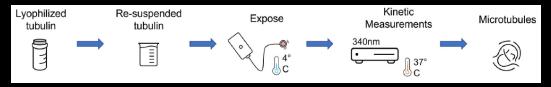
Imaging Results 2 (4 μ M Taxol, $\mathcal{N}=3$)

4 μ M Taxol, \sim 2 μ M tubulin

Results of a quick image analysis performed over the red band

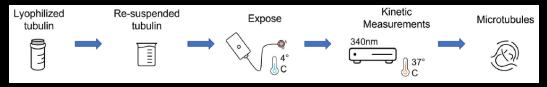

4

NIR PBM—Experiment 3:


Tubulin

Tubulin Turbidity w/ PBM Exposures (30 min each):

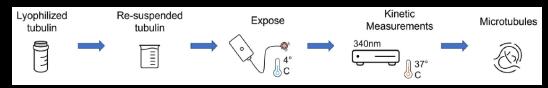
Tubulin Turbidity w/ PBM Exposures (30 min each):



Tubulin Turbidity w/ PBM Exposures (30 min each):

Two different tubulin concentrations were studied: 2.5 & 5 mg/ml

Tubulin Turbidity w/ PBM Exposures (30 min each):



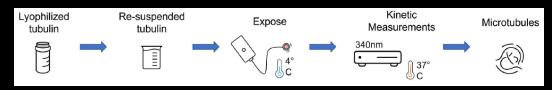
Two different tubulin concentrations were studied: 2.5 & 5 mg/ml

Turbidity Measurements (Absorbance at 340 nm):

Value
2400 s
30 s
81
96 well standard (clear bottom)
14.6 mm
340 nm
Yes, 5 s orbital, medium
Yes, 5 s orbital, medium

Tubulin Turbidity w/ PBM Exposures (30 min each):

Two different tubulin concentrations were studied: 2.5 & 5 mg/ml


Turbidity Measurements (Absorbance at 340 nm):

Parameter	Value
$t_{ m total}$	2400 s
t_{int}	30 s
N _{reads}	81
Plate type	96 well standard (clear bottom)
Well height/depth	14.6 mm
λ _{abs}	340 nm
Shake before	Yes, 5 s orbital, medium
Shake between	Yes, 5 s orbital, medium

SpectraMax iD5 Multi-Mode Microplate Reader

Tubulin Turbidity w/ PBM Exposures (30 min each):

Two different tubulin concentrations were studied: 2.5 & 5 mg/ml

Turbidity Measurements (Absorbance at 340 nm):

Parameter	Value
$t_{ m total}$	2400 s
t_{int}	30 s
N _{reads}	81
Plate type	96 well standard (clear bottom)
Well height/depth	14.6 mm
λ _{abs}	340 nm
Shake before	Yes, 5 s orbital, medium
Shake between	Yes, 5 s orbital, medium

SpectraMax iD5 Multi-Mode Microplate Reader

Measurements were performed with $\sim 100 \, \mu l$ of each sample per well.

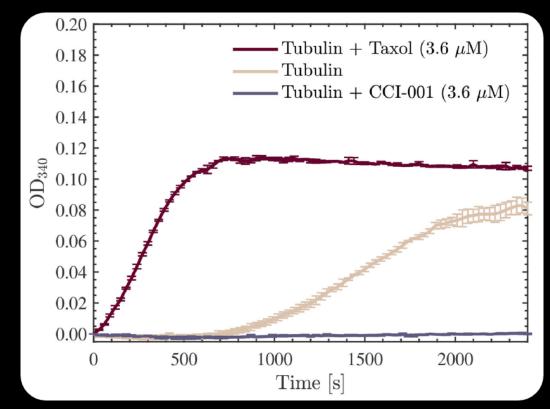
Validation of Turbidity Protocol and Methodology

Prior to performing any exposures, we tested our equipment and protocol.

Validation of Turbidity Protocol and Methodology

Prior to performing any exposures, we tested our equipment and protocol.

Three scenarios were compared:

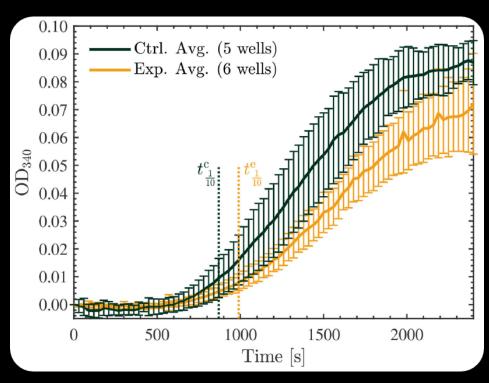

- Tubulin Only
- Tubulin + Taxol (encourages & supports MT polymerization)
- Tubulin + CCI-001 (cytotoxic, inhibits β-tubulin polymerization)

Validation of Turbidity Protocol and Methodology

Prior to performing any exposures, we tested our equipment and protocol.

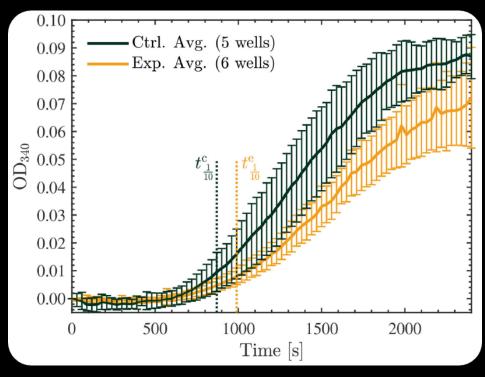
Three scenarios were compared:

- Tubulin Only
- Tubulin + Taxol (encourages & supports MT polymerization)
- Tubulin + CCI-001 (cytotoxic, inhibits β -tubulin polymerization)



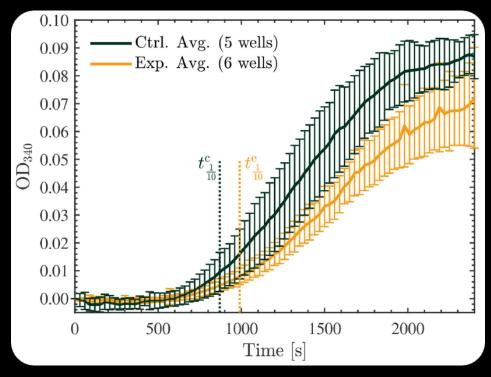
Results of turbidity measurements performed on 22.7 μ M tubulin (N = 1)

Curves shown are the average of 3 wells measured separately


22.7 μM tubulin

PBM-Exposed vs. Unexposed

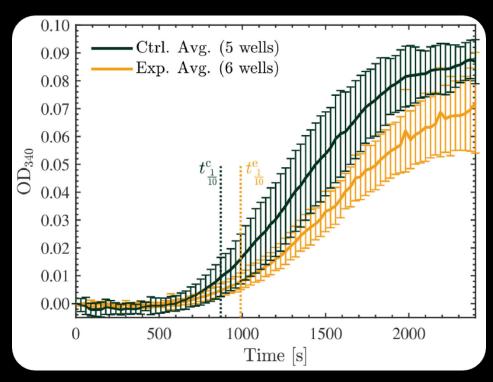
22.7 μM tubulin


PBM-Exposed vs. Unexposed

22.7 μM tubulin

PBM-Exposed vs. Unexposed

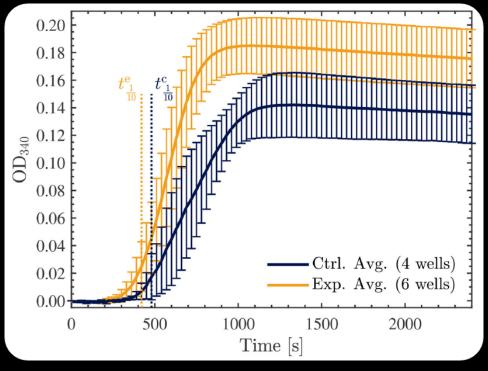
Tenth times calculated for the control and exposed curves were 870 s and 990 s, respectively. Maximal slopes were $5.0 \pm 0.1 \& 3.8 \pm 0.1 \text{ mOD/min}$.


22.7 μM tubulin

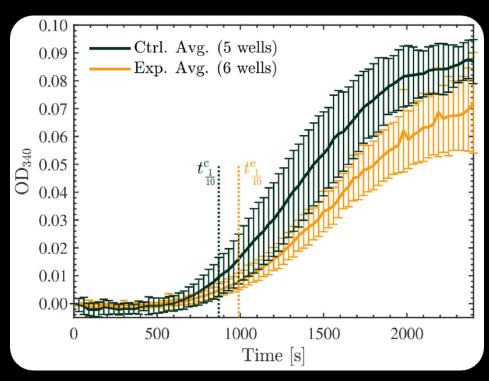
PBM-Exposed vs. Unexposed

Tenth times calculated for the control and exposed curves were 870 s and 990 s, respectively. Maximal slopes were $5.0 \pm 0.1 \& 3.8 \pm 0.1 \text{ mOD/min}$.

45.5 μM tubulin

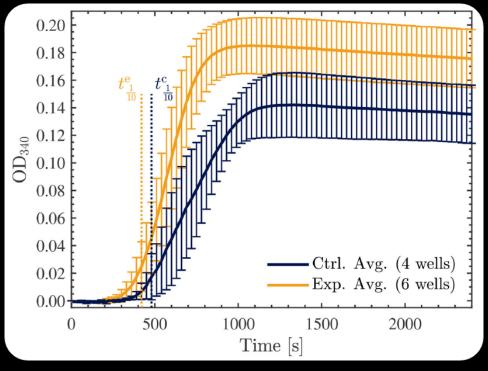

PBM-Exposed vs. Unexposed

22.7 μM tubulin


PBM-Exposed vs. Unexposed

Tenth times calculated for the control and exposed curves were 870 s and 990 s, respectively. Maximal slopes were $5.0 \pm 0.1 \& 3.8 \pm 0.1 \text{ mOD/min}$.

45.5 μM tubulin


PBM-Exposed vs. Unexposed

22.7 μM tubulin

PBM-Exposed vs. Unexposed

Tenth times calculated for the control and exposed curves were 870 s and 990 s, respectively. Maximal slopes were $5.0 \pm 0.1 \& 3.8 \pm 0.1 \text{ mOD/min}$.

45.5 μM tubulin

PBM-Exposed vs. Unexposed

Tenth times calculated for the control and exposed curves were 480 s and 420 s, respectively. Maximal slopes were $17.6 \pm 0.5 \& 33.2 \pm 0.8 \text{ mOD/min}$.

Smoluchowski Equation:

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

Smoluchowski Equation:
$$K = \frac{k}{V} = \frac{4\pi (D_1 + D_2)(R_1 + R_2)}{V}$$

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

• *K* = coagulation kernel, *k* = macroscopic reaction rate

Smoluchowski Equation:
$$K = \frac{k}{V} = \frac{4\pi (D_1 + D_2)(R_1 + R_2)}{V}$$

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

- *K* = coagulation kernel, *k* = macroscopic reaction rate
- Diffusion coefficients governed by: $D = \frac{k_{\rm B}T}{f} = \frac{k_{\rm B}T}{6\pi R\eta}$

NIR PBM of Cells, Tubulin & MTs

83

Smoluchowski Equation:
$$K = \frac{k}{V} = \frac{4\pi (D_1 + D_2)(R_1 + R_2)}{V}$$

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

- *K* = coagulation kernel, *k* = macroscopic reaction rate
- Diffusion coefficients governed by: $D = \frac{k_{\rm B}T}{f} = \frac{k_{\rm B}T}{6\pi\,R\eta}$

Hydration shell increases under NIR irradiation:

Smoluchowski Equation:
$$K = \frac{k}{V} = \frac{4\pi (D_1 + D_2)(R_1 + R_2)}{V}$$

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

- *K* = coagulation kernel, *k* = macroscopic reaction rate
- Diffusion coefficients governed by: $D = \frac{k_{\rm B}T}{f} = \frac{k_{\rm B}T}{6\pi\,R\eta}$

Hydration shell increases under NIR irradiation:

• Proteins in solution interact with the solute, creating what is known as a 'hydration shell' in their immediate vicinity. PNAS **104**(52), 20749–20752 (2007)

NIR PBM of Cells, Tubulin & MTs

85

Smoluchowski Equation:
$$K = \frac{k}{V} = \frac{4\pi (D_1 + D_2)(R_1 + R_2)}{V}$$

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

- *K* = coagulation kernel, *k* = macroscopic reaction rate
- Diffusion coefficients governed by: $D = \frac{k_{\rm B}T}{f} = \frac{k_{\rm B}T}{6\pi\,R\eta}$

Hydration shell increases under NIR irradiation:

- Proteins in solution interact with the solute, creating what is known as a 'hydration shell' in their immediate vicinity. PNAS **104**(52), 20749–20752 (2007)
- THz absorption spectra studies of protein solutes (validated against MD simulations) show that the dynamic hydration shell around proteins can extend from ~14–22 Å, corresponding to at least five layers of water molecules. Methods **52**(1), 74–83 (2010)

Smoluchowski Equation: $K = \frac{k}{V} = \frac{4\pi (D_1 + D_2)(R_1 + R_2)}{V}$

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

- K = coagulation kernel, k = macroscopic reaction rate
- Diffusion coefficients governed by: $D = \frac{k_{\rm B}T}{f} = \frac{k_{\rm B}T}{6\pi R\eta}$

Hydration shell increases under NIR irradiation:

- Proteins in solution interact with the solute, creating what is known as a 'hydration shell' in their immediate vicinity. PNAS **104**(52), 20749–20752 (2007)
- THz absorption spectra studies of protein solutes (validated against MD simulations) show that the dynamic hydration shell around proteins can extend from ~14–22 Å, corresponding to at least five layers of water molecules. Methods **52**(1), 74–83 (2010)
- This increased effective R causes D to decrease, thereby making it harder for the tubulin dimers to coalesce.

Smoluchowski Equation: $K = \frac{k}{V} = \frac{4\pi (D_1 + D_2)(R_1 + R_2)}{V}$

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

- K = coagulation kernel, k = macroscopic reaction rate
- Diffusion coefficients governed by: $D = \frac{k_{\rm B}T}{f} = \frac{k_{\rm B}T}{6\pi R\eta}$

Hydration shell increases under NIR irradiation:

- Proteins in solution interact with the solute, creating what is known as a 'hydration shell' in their immediate vicinity. PNAS **104**(52), 20749–20752 (2007)
- THz absorption spectra studies of protein solutes (validated against MD simulations) show that the dynamic hydration shell around proteins can extend from ~14–22 Å, corresponding to at least five layers of water molecules. Methods **52**(1), 74–83 (2010)
- This increased effective R causes D to decrease, thereby making it harder for the tubulin dimers to coalesce.

Currently being tested with dynamic light scattering (DLS) experiments.

Smoluchowski Equation:
$$K = \frac{k}{V} = \frac{4\pi (D_1 + D_2)(R_1 + R_2)}{V}$$

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

- K = coagulation kernel, k = macroscopic reaction rate
- Diffusion coefficients governed by: $D = \frac{k_{\rm B}T}{f} = \frac{k_{\rm B}T}{6\pi R\eta}$

Hydration shell increases under NIR irradiation:

- Proteins in solution interact with the solute, creating what is known as a 'hydration shell' in their immediate vicinity. PNAS 104(52), 20749-20752 (2007)
- THz absorption spectra studies of protein solutes (validated against MD simulations) show that the dynamic hydration shell around proteins can extend from ~14–22 Å, corresponding to at least five layers of water molecules. Methods **52**(1), 74–83 (2010)
- This increased effective R causes D to decrease, thereby making it harder for the tubulin dimers to coalesce.

Currently being tested with dynamic light scattering (DLS) experiments.

An Additional Consideration:

NIR PBM is affecting the tubulin and MTs at a molecular and/or structural level (e.g., H-bonds could be affected, or even secondary structures)

Smoluchowski Equation:
$$K = \frac{k}{V} = \frac{4\pi (D_1 + D_2)(R_1 + R_2)}{V}$$

Describes the simultaneous coagulation of particles involved in processes such as polymerization. *Phys. Z.* **17**, 557–571 & 585–599 (1916)

- K = coagulation kernel, k = macroscopic reaction rate
- Diffusion coefficients governed by: $D = \frac{k_{\rm B}T}{f} = \frac{k_{\rm B}T}{6\pi R\eta}$

Hydration shell increases under NIR irradiation:

- Proteins in solution interact with the solute, creating what is known as a 'hydration shell' in their immediate vicinity. PNAS 104(52), 20749-20752 (2007)
- THz absorption spectra studies of protein solutes (validated against MD simulations) show that the dynamic hydration shell around proteins can extend from \sim 14–22 Å, corresponding to at least five layers of water molecules. Methods **52**(1), 74–83 (2010)
- This increased effective R causes D to decrease, thereby making it harder for the tubulin dimers to coalesce.

Currently being tested with dynamic light scattering (DLS) experiments.

An Additional Consideration:

NIR PBM is affecting the tubulin and MTs at a molecular and/or structural level (e.g., H-bonds could be affected, or even secondary structures)

Preliminary results w/ Raman Spectroscopy demonstrate an effect on secondary structures (α-helices & β-sheets)

Conclusions & Future Directions

Living Cells An increased <i>R</i> in both cell lines at 50 kHz and in U251 cells only at 100 kHz: suggests an inhibitory effect, that in the case of HeLa cells, was balanced with an increased current.	

Conclusions & Future Directions

Living Cells

An increased R in both cell lines at 50 kHz and in U251 cells only at 100 kHz: suggests an inhibitory effect, that in the case of HeLa cells, was balanced with an increased current.

Microtubules

Irradiation with NIR PBM appears to lead to significant depolymerization of microtubules, i.e. MT dynamics are upregulated, facilitating cytoplasmic remodelling.

Conclusions & Future Directions

Living Cells

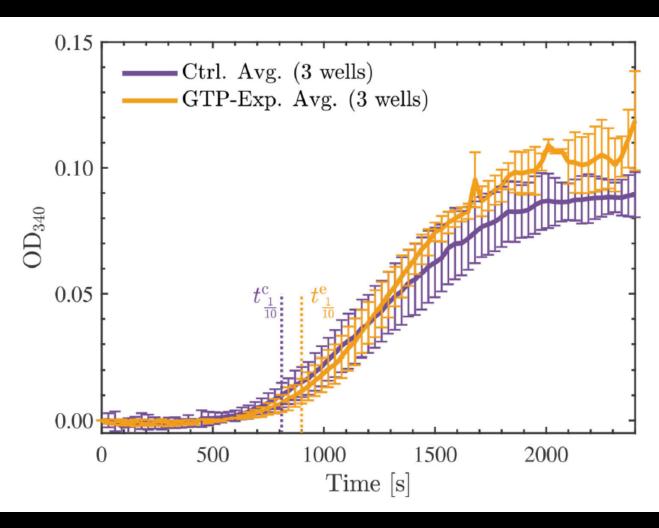
An increased R in both cell lines at 50 kHz and in U251 cells only at 100 kHz: suggests an inhibitory effect, that in the case of HeLa cells, was balanced with an increased current.

Microtubules

Irradiation with NIR PBM appears to lead to significant depolymerization of microtubules, i.e. MT dynamics are upregulated, facilitating cytoplasmic remodelling.

Tubulin

Tubulin concentrations representative of the cellular concentration that were exposed to NIR PBM showed a measurable decrease polymerization rates and total polymer mass.


Future Directions: (1) *in vitro* experiments that study the effects of different PBM pulse frequencies, (2) in vitro experiments that study the effects in an environment that more accurately resembles the cellular environment

Thank you!

Questions?

Backup Slides

GTP Exposure

