Electromagnetic Transition Rate Studies in ${ }^{28} \mathrm{Mg}$

Matthew S. Martin for the TIP/TIGRESS Collaborations

Department of Physics, Simon Fraser University

8 June, 2022

Fundamental Interactions

Fundamental Interactions

Electromagnetic Transition Rates

- Nuclear structure theories model strong force between nucleons
- Predict nuclear wavefunctions
- Lifetime of nuclear states

$$
\left.\frac{1}{\tau_{\text {theory }}} \propto\left|\left\langle\psi_{\text {ground }}\right| \hat{E} 2\right| \psi_{\text {excited }}\right\rangle\left.\right|^{2}
$$

- Allows comparision between $\tau_{\text {theory }}$ and $\tau_{\text {exp }}$

The Nuclear Landscape

- Nuclear force is a residual of the strong interaction
- No complete theory of nuclei
- Many theoretical approaches
- Address various regions of the nuclear landscape
- Measurements needed to test and guide theory

ISAC at TRIUMF

SFU

Detectors

- Gamma ray detection with TIGRESS HPGe clovers
- Charged particle detection with Csl Ball
- Particle-Gamma coincidences allows for selective trigger and offline analysis
- Essential for isolating low cross-section reactions
- i.e. $\sim 1 / 1000$ reactions results in ${ }^{28} \mathrm{Mg}$

Fusion Evaporation

$$
{ }^{18} \mathrm{O}\left({ }^{12} \mathrm{C}, 2 \mathrm{p}\right){ }^{28} \mathrm{Mg}
$$

- Beam impinges on target with energy above Coulomb barrier

Fusion Evaporation

$$
{ }^{18} \mathrm{O}\left({ }^{12} \mathrm{C}, 2 \mathrm{p}\right){ }^{28} \mathrm{Mg}
$$

- Beam impinges on target with energy above Coulomb barrier
- Fusion occurs, forming compound nucleus

Fusion Evaporation

$$
{ }^{18} \mathrm{O}\left({ }^{12} \mathrm{C}, 2 \mathrm{p}\right)^{28} \mathrm{Mg}
$$

Compound Formation

Particle Evaporation

- Beam impinges on target with energy above Coulomb barrier
- Fusion occurs, forming compound nucleus
- On order of $\sim 10^{-20} \mathrm{~s}$, particles evaporate
- Result is excited state of residual nucleus

Fusion Evaporation

$$
{ }^{18} \mathrm{O}\left({ }^{12} \mathrm{C}, 2 \mathrm{p}\right){ }^{28} \mathrm{Mg}
$$

- Beam impinges on target with energy above Coulomb barrier
- Fusion occurs, forming compound nucleus
- On order of $\sim 10^{-20} \mathrm{~s}$, particles evaporate
- Result is excited state of residual nucleus
- Residual nucleus de-excites by emission of gamma ray

The Recoil Distance Method

- Charged particles detected by Csl Ball
- Gamma rays Doppler shifted if decay in flight
- Compare counts of shifted vs non-shifted gamma rays

Shell Model and the Island of Inversion

- Nucleons are placed into single particle energy shells
- Shell model works very well near stability
- Nuclear models are parametrized using data near stability
- $N=20$ shell closure broken far from stability

Previous Measurement of ${ }^{28} \mathrm{Mg}$

PHYSICAL REVIEW C 100, 014322 (2019)

Structure of ${ }^{28} \mathrm{Mg}$ and influence of the neutron $p f$ shell

J. Williams, ${ }^{1,{ }^{*}}$ G. C. Ball, ${ }^{2}$ A. Chester, ${ }^{1}$ T. Domingo, ${ }^{1}$ A. B. Garnsworthy, ${ }^{2}$ G. Hackman, ${ }^{2}$ J. Henderson, ${ }^{2}$ R. Henderson, ${ }^{2}$ R. Krücken, ${ }^{2,3}$ Anil Kumar, ${ }^{4}$ K. D. Launey, ${ }^{5}$ J. Measures, ${ }^{2,6}$ O. Paetkau, ${ }^{2}$ J. Park, ${ }^{2,3}$ G. H. Sargsyan, ${ }^{5}$ J. Smallcombe, ${ }^{2}$ P. C. Srivastava, ${ }^{4}$ K. Starosta,,${ }^{1,{ }^{\dagger}}$ C. E. Svensson, ${ }^{7}$ K. Whitmore, ${ }^{1}$ and M. Williams ${ }^{2}$

- Doppler Shift Attenuation Method (DSAM) used to determine lifetimes
- Not sensitive to $\tau \gtrsim 1 \mathrm{ps}$
- No precise measurement of 2_{1}^{+} state lifetime

$2^{+} \rightarrow 0^{+}$Lifetime - Theoretical Discrepancy

- Measurement resolved discrepancy in $4^{+} \rightarrow 2^{+}$ transition

J. Williams et al. PRC 100014322 (2019).
P. Fintz et al. Nucl. Phys. A 197423 (1972).
T.R. Fisher et al. PRC 71878 (1973).

$2^{+} \rightarrow 0^{+}$Lifetime - Theoretical Discrepancy

- Measurement resolved discrepancy in $4^{+} \rightarrow 2^{+}$ transition
- Theoretical calculations disagree on transition strengths

J. Williams et al. PRC 100014322 (2019).
P. Fintz et al. Nucl. Phys. A 197423 (1972).
T.R. Fisher et al. PRC 71878 (1973).

$2^{+} \rightarrow 0^{+}$Lifetime - Theoretical Discrepancy

- Measurement resolved discrepancy in $4^{+} \rightarrow 2^{+}$ transition
- Theoretical calculations disagree on transition strengths
- NCSM agrees with
$B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)$
measurement
- Disagrees with previous measurements of $2^{+} \rightarrow 0^{+}$ transition

J. Williams et al. PRC 100014322 (2019).
P. Fintz et al. Nucl. Phys. A 197423 (1972).
T.R. Fisher et al. PRC 71878 (1973).

$2^{+} \rightarrow 0^{+}$Lifetime - Theoretical Discrepancy

- Measurement resolved discrepancy in $4^{+} \rightarrow 2^{+}$ transition
- Theoretical calculations disagree on transition strengths
- NCSM agrees with $B\left(E 2 ; 4^{+} \rightarrow 2^{+}\right)$ measurement
- Disagrees with previous measurements of $2^{+} \rightarrow 0^{+}$ transition
- Provide different conclusions
 on nuclear properties

[^0]P. Fintz et al. Nucl. Phys. A 197423 (1972).
T.R. Fisher et al. PRC 71878 (1973).

Experiment Run May-June 2021

- RUN 1: Calibration of CsI Ball

Experiment Run May-June 2021

- RUN 1: Calibration of CsI Ball
- RUN 2: DAQ Shakedown
- New free-flowing DAQ with no global trigger
- Requires reconstruction of events from individual fragments

Experiment Run May-June 2021

- RUN 1: Calibration of CsI Ball
- RUN 2: DAQ Shakedown
- New free-flowing DAQ with no global trigger
- Requires reconstruction of events from individual fragments
- RUN 3: Production Run
- DSAM run with lead-backed target
- Sensitive to shorter-lived states
- Represents the "zero-separation" measurement
- RDM run after
- 11 plunger distances
- $17 \mu \mathrm{~m}$ through $400 \mu \mathrm{~m}$
- ~ 16 hours per distance to build statistics

Online Analysis

- Able to isolate ${ }^{28} \mathrm{Mg}$ using online PID gates
- Can see separation of shifted-to-stopped peaks
- Blue: Upstream
- Green: Corona
- Red: Downstream

Waveform Analysis

- Can fit waveforms from data

$$
\begin{aligned}
W(t)=C & +A_{F}\left(1-e^{-\left(t-t_{0}\right) / \tau_{F}}\right) e^{-\left(t-t_{0}\right) / \tau_{R C}} \\
& +A_{S}\left(1-e^{-\left(t-t_{0}\right) / \tau_{S}}\right) e^{-\left(t-t_{0}\right) / \tau_{R C}}
\end{aligned}
$$

- Ratio of slow-to-fast risetime amplitudes $\left[\left(A_{S} / A_{F}\right) * 100+100\right]$ used for particle identification
- More precice determination of t_{0}

Particle Identification

SFU

Calibrated Particle ID

Event Reconstruction

- With newly installed GRIFFIN DAQ at TIGRESS, there is no global trigger number
- Fragments are written with individual timestamps
- Events need to be reconstructed from individual fragments
- Fragments come from various detector types
- Csl Ball
- TIGRESS
- Central contacts
- Individual segments
- BGO suppressors
- Fragment timing is dependent on timing type
- Time coincidence gates must be applied separately

Disordered Fragment Timing

Unsorted Raw Data Timestamps

TIGRESS-TIGRESS Timing

- Coincidence peak ends $\lesssim 150$ ns
- Second peak at ~ 410 ns
- Resolution allows observation of beam bunches

TIP-TIGRESS Timing

- Csl hits arrive before TIGRESS hits
- Two peaks at ~ 1000 ns; separated by $\sim 420 \mathrm{~ns}$
- Cause unknown, currently under investigation
- Gate needs to be set to include all coincident events but not overlapping events

Reconstructed Events

FoldHistogram

- Events reconstructed from individual fragments
- Currently, very few 2-particle events - under investigation

${ }^{22}$ Ne: 1274 keV Gamma-Ray

- Run 54409: RDM with $\mathrm{d}=31 \mu \mathrm{~m}$
- RDM structure present for ${ }^{22} \mathrm{Ne}: 2^{+} \rightarrow 0^{+} \sim 1274 \mathrm{keV}$ gamma ray
- 2α channel, but no gating performed yet
- Blue: Downstream, Green: Corona, Red: Upstream
- Same "zero offset" issue found as online. Work ongoing

Acknowledgements

Thank you to all those who helped with the experiment

H. Asch ${ }^{1}$, A. B. Garnsworthy ${ }^{2}$, C. J. Griffin ${ }^{2}$, G. Hackman ${ }^{2}$,

G. Leckenby ${ }^{2,3}$, J. Liang ${ }^{2,4}$, R. Lubna ${ }^{2}$, C. R. Natzke ${ }^{2,5}$, C. Pearson ${ }^{2}$, A. Redey ${ }^{6}$, K. Starosta ${ }^{7}$, S. Upadhyayula ${ }^{2}$, K. van Wieren ${ }^{8}$, V. Vedia ${ }^{2}$, J. Williams ${ }^{2}$, A. Woinoski ${ }^{1}$, F. Wu ${ }^{7}$, and D. Yates ${ }^{2,3}$
${ }^{1}$ Department of Physics, Simon Fraser University
${ }^{2}$ TRIUMF
${ }^{3}$ Department of Physics and Astronomy, University of British Columbia
${ }^{4}$ Department of Physics and Astronomy, Saint Mary's University
${ }^{5}$ Department of Physics, Colorado School of Mines
${ }^{6}$ School of Engineering Science, Simon Fraser University
${ }^{7}$ Department of Chemistry, Simon Fraser University
${ }^{8}$ Science Technical Centre, Simon Fraser University

SFU

Electromagnetic Transition Rates

- Electromagnetic operators can be calculated analytically
- Transition rates are can be experimentally measured
- Comparison of rates leads to information about nuclear wavefunctions

$$
\begin{gather*}
\lambda\left(\sigma L ; I_{i} \rightarrow I_{f}\right)=\frac{8 \pi \alpha c}{e^{2}} \frac{L+1}{L[(2 L+1)!!]^{2}}\left(\frac{E}{\hbar c}\right)^{2 L+1} B\left(\sigma L ; I_{i} \rightarrow I_{f}\right) \\
B\left(\sigma L ; I_{i} \rightarrow I_{f}\right)=\frac{\left|\left\langle I_{f}\|\mathfrak{M}(\sigma L)\| I_{i}\right\rangle\right|^{2}}{2 I_{i}+1} \tag{1}
\end{gather*}
$$

- L is the angular momentum of the photon
- E is energy of the photon
- $B\left(\sigma L ; I_{i} \rightarrow I_{f}\right)$ is the reduced transition probability
- $\mathfrak{M}(\sigma L)$ is an electric or magnetic multipole operator

Doppler Shift Attenuation Method

- Charged particles detected by Csl Ball
- Residual nucleus gradually slowed in backing
- Doppler shift dependent on how far into backing residual nucleus gets before emitting gamma ray
- Determine lifetime using statistical methods comparing lineshape from experimental data to simulations using Geant4

GEANT4 Simulations

SFU

- Monte Carlo simulation framework
- Simulate reactions and geometries
- TIGRESS and Csl ball constructed
- Simulate and optimize experimental parameters
- Data analysis

Waveform Analysis

- First step in analysis is proper PID
- Requires determination of particle type

- Alphas (left) and protons (right) result in different waveforms
- Least-squares fit applied to each waveform
- Ratio of slow-to-fast risetime amplitude used to determine particle type

[^0]: J. Williams et al. PRC 100014322 (2019).

