Electromagnetic Transition Rate Studies in ²⁸Mg

Matthew S. Martin for the TIP/TIGRESS Collaborations

Department of Physics, Simon Fraser University

8 June, 2022

Fundamental Interactions

- ▶ Nuclear structure theories model strong force between nucleons
 - ▶ Predict nuclear wavefunctions
- Lifetime of nuclear states

$$rac{1}{ au_{theory}} \propto \left| \left\langle \psi_{
m ground} \, \middle| \, \hat{\it E}2 \, \middle| \, \psi_{
m excited}
ight
angle
ight|^2$$

▶ Allows comparision between $\tau_{\textit{theory}}$ and $\tau_{\textit{exp}}$

- Nuclear force is a residual of the strong interaction
 - No complete theory of nuclei
- Many theoretical approaches
 - Address various regions of the nuclear landscape
- Measurements needed to test and guide theory

Detectors

- ► Gamma ray detection with TIGRESS HPGe clovers
- Charged particle detection with Csl Ball
- Particle-Gamma coincidences allows for selective trigger and offline analysis
 - Essential for isolating low cross-section reactions
 - i.e. $\sim 1/1000$ reactions results in $^{28}{\rm Mg}$

$$^{18}\text{O}(^{12}\text{C},2\text{p})^{28}\text{Mg}$$

▶ Beam impinges on target with energy above Coulomb barrier

Fusion Evaporation

$$^{18} {
m O} {\left(^{12}{
m C}, 2{
m p}
ight)^{28}} {
m Mg}$$

- ▶ Beam impinges on target with energy above Coulomb barrier
- ► Fusion occurs, forming compound nucleus

Fusion Evaporation

- ▶ Beam impinges on target with energy above Coulomb barrier
- ► Fusion occurs, forming compound nucleus
- ightharpoonup On order of $\sim 10^{-20}$ s, particles evaporate
 - ▶ Result is excited state of residual nucleus

Fusion Evaporation

- Beam impinges on target with energy above Coulomb barrier
- ► Fusion occurs, forming compound nucleus
- lacktriangle On order of $\sim 10^{-20}$ s, particles evaporate
 - ▶ Result is excited state of residual nucleus
- Residual nucleus de-excites by emission of gamma ray

The Recoil Distance Method

- Charged particles detected by Csl Ball
- Gamma rays Doppler shifted if decay in flight
- Compare counts of shifted vs non-shifted gamma rays

Shell Model and the Island of Inversion

- Nucleons are placed into single particle energy shells
- Shell model works very well near stability
- Nuclear models are parametrized using data near stability
- N = 20 shell closure broken far from stability

PHYSICAL REVIEW C 100, 014322 (2019)

Structure of 28 Mg and influence of the neutron pf shell

J. Williams, ^{1,*} G. C. Ball, ² A. Chester, ¹ T. Domingo, ¹ A. B. Garnsworthy, ² G. Hackman, ² J. Henderson, ² R. Henderson, ² R. Krücken, ^{2,3} Anil Kumar, ⁴ K. D. Launey, ⁵ J. Measures, ^{2,6} O. Paetkau, ² J. Park, ^{2,3} G. H. Sargsyan, ⁵ J. Smallcombe, ² P. C. Srivastava, ⁴ K. Starosta, ^{1,†} C. E. Svensson, ⁷ K. Whitmore, ¹ and M. Williams²

- Doppler Shift Attenuation Method (DSAM) used to determine lifetimes
- Not sensitive to $\tau \gtrsim 1$ ps
- No precise measurement of 2₁⁺ state lifetime

Measurement resolved discrepancy in $4^+ \rightarrow 2^+$ transition

J. Williams et al. PRC 100 014322 (2019).

P. Fintz et al. Nucl. Phys. A 197 423 (1972).
T.R. Fisher et al. PRC 7 1878 (1973).

- Measurement resolved discrepancy in $4^+ \rightarrow 2^+$ transition
- Theoretical calculations disagree on transition strengths

J. Williams et al. PRC 100 014322 (2019).P. Fintz et al. Nucl. Phys. A 197 423 (1972).

T.R. Fisher et al. PRC 7 1878 (1973).

- ► Measurement resolved discrepancy in $4^+ \rightarrow 2^+$ transition
- Theoretical calculations disagree on transition strengths
- NCSM agrees with $B(E2; 4^+ \rightarrow 2^+)$ measurement
- \blacktriangleright Disagrees with previous measurements of $2^+ \rightarrow 0^+$ transition

J. Williams et al. PRC 100 014322 (2019).

P. Fintz et al. Nucl. Phys. A 197 423 (1972).
T.R. Fisher et al. PRC 7 1878 (1973).

- Measurement resolved discrepancy in $4^+ \rightarrow 2^+$ transition
- Theoretical calculations disagree on transition strengths
- NCSM agrees with $B(E2; 4^+ \rightarrow 2^+)$ measurement
- ▶ Disagrees with previous measurements of $2^+ \rightarrow 0^+$ transition
- Provide different conclusions on nuclear properties

J. Williams et al. PRC 100 014322 (2019).

P. Fintz et al. Nucl. Phys. A 197 423 (1972).

T.R. Fisher et al. PRC 7 1878 (1973).

Experiment Run May-June 2021

▶ RUN 1: Calibration of Csl Ball

- RUN 1: Calibration of Csl Ball
- ► RUN 2: DAQ Shakedown
 - ▶ New free-flowing DAQ with no global trigger
 - ▶ Requires reconstruction of events from individual fragments

- RUN 1: Calibration of Csl Ball
- RUN 2: DAQ Shakedown
 - ▶ New free-flowing DAQ with no global trigger
 - ▶ Requires reconstruction of events from individual fragments
- RUN 3: Production Run
 - ▶ DSAM run with lead-backed target
 - Sensitive to shorter-lived states
 - ▶ Represents the "zero-separation" measurement
 - RDM run after
 - ▶ 11 plunger distances
 - \blacktriangleright 17 μ m through 400 μ m
 - ▶ ~16 hours per distance to build statistics

- ▶ Able to isolate ²⁸Mg using online PID gates
- ► Can see separation of shifted-to-stopped peaks
 - Blue: UpstreamGreen: CoronaRed: Downstream

Can fit waveforms from data

$$W(t) = C + A_F (1 - e^{-(t-t_0)/\tau_F}) e^{-(t-t_0)/\tau_{RC}} + A_S (1 - e^{-(t-t_0)/\tau_S}) e^{-(t-t_0)/\tau_{RC}}$$

- ▶ Ratio of slow-to-fast risetime amplitudes $[(A_S/A_F)*100+100]$ used for particle identification
- ▶ More precice determination of t_0

- ▶ With newly installed GRIFFIN DAQ at TIGRESS, there is no global trigger number
 - ► Fragments are written with individual timestamps
 - ▶ Events need to be reconstructed from individual fragments
- Fragments come from various detector types
 - Csl Ball
 - ▶ TIGRESS
 - Central contacts
 - ▶ Individual segments
 - ▶ BGO suppressors
- ▶ Fragment timing is dependent on timing type
 - ▶ Time coincidence gates must be applied separately

- ightharpoonup Coincidence peak ends $\lesssim 150$ ns
- ightharpoonup Second peak at \sim 410 ns
- Resolution allows observation of beam bunches

TIP-TIGRESS Timing

- Csl hits arrive before TIGRESS hits
- ightharpoonup Two peaks at \sim 1000 ns; separated by \sim 420 ns
 - ► Cause unknown, currently under investigation
- Gate needs to be set to include all coincident events but not overlapping events

- Events reconstructed from individual fragments
- ► Currently, very few 2-particle events under investigation

- ▶ Run 54409: RDM with d=31 μ m
- \blacktriangleright RDM structure present for $^{22}\text{Ne} : 2^+ \to 0^+ \sim \! 1274 \text{ keV}$ gamma ray
 - $ightharpoonup 2\alpha$ channel, but no gating performed yet
 - ▶ Blue: Downstream, Green: Corona, Red: Upstream
 - Same "zero offset" issue found as online. Work ongoing

Acknowledgements

Thank you to all those who helped with the experiment

H. Asch¹, A. B. Garnsworthy², C. J. Griffin², G. Hackman²,
G. Leckenby^{2,3}, J. Liang^{2,4}, R. Lubna², C. R. Natzke^{2,5}, C. Pearson²,
A. Redey⁶, K. Starosta⁷, S. Upadhyayula², K. van Wieren⁸, V. Vedia²,
J. Williams², A. Woinoski¹, F. Wu⁷, and D. Yates^{2,3}

Department of Physics, Simon Fraser University

² TRIUMF

³ Department of Physics and Astronomy, University of British Columbia

⁴ Department of Physics and Astronomy, Saint Mary's University

⁵ Department of Physics, Colorado School of Mines

⁶ School of Engineering Science, Simon Fraser University

⁷ Department of Chemistry, Simon Fraser University

⁸ Science Technical Centre, Simon Fraser University

- ▶ Electromagnetic operators can be calculated analytically
- ▶ Transition rates are can be experimentally measured
- ► Comparison of rates leads to information about nuclear wavefunctions

$$\lambda(\sigma L; I_i \to I_f) = \frac{8\pi\alpha c}{e^2} \frac{L+1}{L\left[(2L+1)!!\right]^2} \left(\frac{E}{\hbar c}\right)^{2L+1} B(\sigma L; I_i \to I_f)$$
(1)

$$B(\sigma L; I_i \to I_f) = \frac{|\langle I_f \parallel \mathfrak{M}(\sigma L) \parallel I_i \rangle|^2}{2I_i + 1}$$
 (2)

- ▶ *L* is the angular momentum of the photon
- ▶ *E* is energy of the photon
- ▶ $B(\sigma L; I_i \rightarrow I_f)$ is the reduced transition probability
- \blacktriangleright $\mathfrak{M}(\sigma L)$ is an electric or magnetic multipole operator

- Charged particles detected by Csl Ball
- Residual nucleus gradually slowed in backing
- ▶ Doppler shift dependent on how far into backing residual nucleus gets before emitting gamma ray
- ▶ Determine lifetime using statistical methods comparing lineshape from experimental data to simulations using GEANT4

- Monte Carlo simulation framework
- Simulate reactions and geometries
- TIGRESS and Csl ball constructed
- Simulate and optimize experimental parameters
- Data analysis

- ▶ First step in analysis is proper PID
 - ► Requires determination of particle type

- ▶ Alphas (left) and protons (right) result in different waveforms
- ► Least-squares fit applied to each waveform
 - ▶ Ratio of slow-to-fast risetime amplitude used to determine particle type