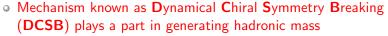
Pion and Kaon Form Factor Measurements at the EIC


Outline

- Meson form factors
- Form factors at the EIC through DEMP
- Kaon form factors at the EIC Outlook

Cover Image - Brookhaven National Lab, https://www.flickr.com/photos/brookhavenlab/

Understanding Dynamic Matter

- Interactions and structure are not isolated ideas in nuclear matter
 - Observed properties of nucleons and nuclei (mass, spin) emerge from this complex interplay
 - Properties of hadrons are emergent phenomena

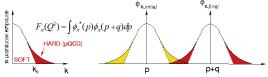

- QCD behaves very differently at short and long distances (high and low energy)
 - How do our two distinct regions of QCD behaviour connect?
- A major puzzle of the standard model to try and resolve!
- How can we examine hadronic structure?

Image - A. Deshpande, Stony Brook University

Meson Form Factors

- Charged pion (π^{\pm}) and Kaon (K^{\pm}) form factors (F_{π}, F_{K}) are key QCD observables
 - Describe the spatial distribution of partons within a hadron

- Meson wave function can be split into $\phi_{\pi}^{\rm soft}$ $(k < k_0)$ and $\phi_{\pi}^{\rm hard}$, the hard tail
 - Can treat $\phi_{\pi}^{\rm hard}$ in pQCD, cannot with $\phi_{\pi}^{\rm soft}$
 - Form factor is the overlap between the two tails (right figure)
- F_{π} and F_{K} of special interest in hadron structure studies
 - \circ π Lightest and simple QCD quark system
 - K Another simple system, contains strange quark

The Pion in pQCD

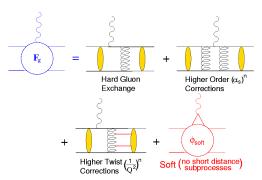
• At very large Q^2 , F_{π} can be calculated using pQCD

$$F_{\pi}(Q^2) = \frac{4}{3}\pi\alpha_s \int_0^1 dx dy \frac{2}{3} \frac{1}{yQ^2} \phi(x)\phi(y)$$

• As $Q^2 \to \infty$, the pion distribution amplitude, ϕ_{π} becomes -

$$\phi_\pi(x)
ightarrow rac{3f_\pi}{\sqrt{n_c}} x (1-x) \ f_\pi = 93$$
 MeV, $\pi^+
ightarrow \mu^+
u$ decay constant

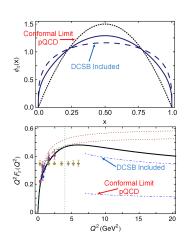
ullet F_{π} can be calculated with pQCD in this limit to be -


$$Q^2 F_\pi \xrightarrow[Q^2 \to \infty]{} 16\pi \alpha_s(Q^2) f_\pi^2$$

- This is a rigorous prediction of pQCD
- Q² reach of existing data doesn't extend into this region
 - Need unique, cutting edge experiments to push into this region

Eqns - G.P. Lepage, S.J. Brodsky, PLB 87, p359, 1979

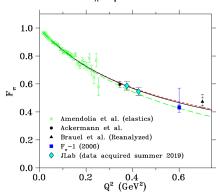
The Pion in pQCD


• At experimentally accessible Q^2 , both the hard and soft components contribute

- Interplay of hard and soft contributions poorly understood
- o Experiments can study the transition from soft to hard regime

Connecting Pion Structure and Mass Generation

- ϕ_{π} as shown before has a broad, concave shape
- Previous pQCD derivation (conformal limit) did not include DCSB effects
- Incorporating DCSB changes $\phi_{\pi}(x)$ and brings F_{π} calculation much closer to the data
 - "Squashes down" PDA
- Pion structure and hadron mass generation are interlinked
- How can we measure F_{π} or F_{K} ?

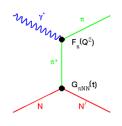

L. Chang, et al., PRL110(2013) 132001, PRL111(2013), 141802

Measurement of F_{π} - Low Q^2

- At low Q^2 , F_{π} can be measured model independently
 - ullet High energy elastic π^- scattering from atomic electrons in H
- ullet CERN SPS 300 GeV pions to measure F_π up to

$$Q^2 = 0.25 \ GeV^2$$

- Used data to extract pion charge radius $r_{\pi} = 0.657 \pm 0.012 \; fm$
- Maximum accessible Q² approximately proportional to pion beam energy
 - $Q^2 = 1 \text{ GeV}^2$ requires 1 TeV pion beam (!)


Amendolia, et al., NPB 277(1986) p168, P. Brauel, et al., ZPhysC (1979), p101, H. Ackermann, et al., NPB137 (1978), p294

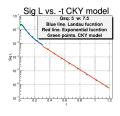
Measurement of F_{π} at Higher Q^2

- To access F_{π} at high Q^2 , must measure F_{π} indirectly
 - Use the "pion cloud" of the proton via $p(e, e'\pi^+)n$
- At small -t, the pion pole process dominates the longitudinal cross section, σ_L
- ullet In the Born term model, F_π^2 appears as -

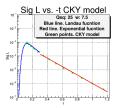
$$rac{d\sigma_L}{dt} \propto rac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- We do not use the Born term model
- Drawbacks of this technique -
 - Isolating σ_L experimentally challenging
 - Theoretical uncertainty in F_{π} extraction
 - Model dependent (smaller dependency at low -t)

Form Factors at the EIC

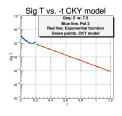

- Upcoming JLab measurements push the Q^2 reach of pion (F_{π}) and kaon (F_K) form factor data considerably
- Still can't answer some key questions regarding the emergence of hadronic mass however
- Can we get quantitative guidance on the emergent pion mass mechanism?
 - ightarrow Need F_{π} data for $Q^2=10-40$ $GeVc^{-2}$
- What is the size and range of interference between emergent mass and the Higgs-mass mechanism?
 - \rightarrow Need F_K data for $Q^2 = 10 20 \; GeVc^{-2}$
- Beyond what is possible at JLab in the 12 GeV era
 - Need a different machine → The Electron-Ion Collider (EIC)

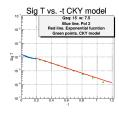
DEMP Studies at the EIC

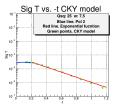

- Measurements of the $p(e,e'\pi^+n)$ reaction at the EIC can potentially extend the Q^2 reach of F_π measurements even further
- A challenging measurement however
 - Need good identification of $p(e, e'\pi^+n)$ triple coincidences
 - \circ Conventional L-T separation not possible \to would need lower than feasible proton energies to access low ϵ
 - Need to use a model to isolate $d\sigma_L/dt$ from $d\sigma_{uns}/dt$
- Utilise new EIC software framework to assess the feasibility of the study with updated design parameters
 - Feed in events generated from a DEMP event generator
 - Multiple detector concepts to evaluate
- Event generator being modified to generate kaon events

DEMP Event Generator

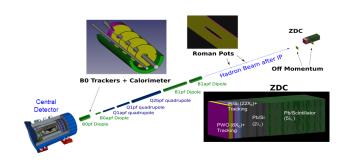
- Want to examine exclusive reactions
 - $p(e, e'\pi^+n)$ exclusive reaction is reaction of interest $\rightarrow p(e, e'\pi^+)X$ SIDIS events are background
- Generator uses Regge-based $p(e, e'\pi^+)n$ model from T.K. Choi, K.J. Kong and B.G. Yu (CKY) arXiv 1508.00969
 - MC event generator created by parametrising CKY σ_L , σ_T for $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2







DEMP Event Generator


- Want to examine exclusive reactions
 - $p(e, e'\pi^+n)$ exclusive reaction is reaction of interest $\rightarrow p(e, e'\pi^+)X$ SIDIS events are background
- Generator uses Regge-based $p(e,e'\pi^+)n$ model from T.K. Choi, K.J. Kong and B.G. Yu (CKY) arXiv 1508.00969
 - MC event generator created by parametrising CKY σ_L , σ_T for $5 < Q^2 < 35$, 2 < W < 10, 0 < -t < 1.2

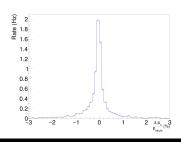
EIC Detector Overview

- Feed generator output into detector simulations
- Far forward detectors critical for form factor studies
- Current simulation effort has been focused on the EIC Comprehensive Chromodynamics Experiment (ECCE)
 - o https://www.ecce-eic.org/

Selecting Good Simulated Events

- Pass through a full Geant4 simulation (ECCE)
 - More realistic estimates of detector acceptance/performance than earlier studies
- Identify $e'\pi^+n$ triple coincidences in the simulation output
- For a good triple coincidence event, require -
 - Exactly two tracks
 - One positively charged track going in the +z direction (π^+)
 - One negatively charged track going in the -z direction (e')
 - At least one hit in the zero degree calorimeter (ZDC)
 - For 5 (e', GeV) on 100 (p, GeV) events, require that the hit has an energy deposit over 40 GeV
- Both conditions must be satisfied
- Determine kinematic quantities for remaining events

Simulation Results - Neutron Reconstruction


- High energy ZDC hit requirement used as a veto
 - ZDC neutron ERes is relatively poor though

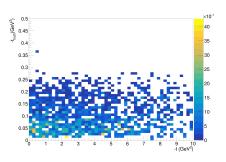
$$\frac{35\%}{\sqrt{\textit{E}}} \oplus 2\%$$

- ullet However, position resolution is excellent, ~ 1.5 mm
- Combine ZDC position info with missing momentum track to reconstruct the neutron track

$$p_{ extit{miss}} = |ec{p}_{ extit{e}} + ec{p}_{ extit{p}} - ec{p}_{ extit{e}'} - ec{p}_{\pi^+}|$$

- Use ZDC angles, θ_{ZDC} and ϕ_{ZDC} rather than the missing momentum angles, θ_{PMiss} and ϕ_{PMiss}
- Adjust E_{Miss} to reproduce m_n
- After adjustments, reconstructed neutron track matches "truth" momentum closely

Simulation Results - t Reconstruction


• Reconstruction of -t from detected e' and π^+ tracks proved highly unreliable

$$-t = -(p_e - p_{e'} - p_{\pi})^2$$

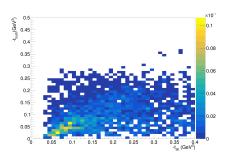
 Calculation of -t from reconstructed neutron track matched "truth" value closely

$$-t_{alt} = -(p_p - p_n)^2$$

 Only possible due to the excellent position accuracy provided by a good ZDC

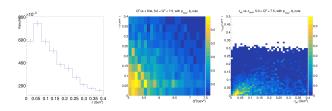
• Note that the x-axis -t scale here runs to 10 GeV^2 !

Simulation Results - t Reconstruction

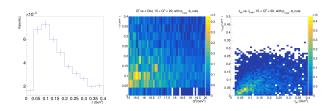

• Reconstruction of -t from detected e' and π^+ tracks proved highly unreliable

$$-t = -(p_e - p_{e'} - p_{\pi})^2$$

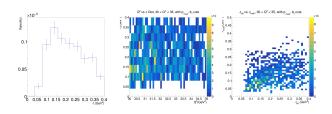
 Calculation of -t from reconstructed neutron track matched "truth" value closely


$$-t_{alt} = -(p_p - p_n)^2$$

 Only possible due to the excellent position accuracy provided by a good ZDC


 x-axis -t scale an order of magnitude smaller now!

Simulation Results - Q^2 5 - 7.5 GeV^2


- Predicted $e'\pi^+n$ triple coincidence rate, binned in Q^2 and -t
 - 5 (e', GeV) on 100 (p, GeV) events
 - $\mathcal{L} = 10^{34} cm^{-2} s^{-1}$ assumed
 - \bullet -t bins are 0.04 GeV^2 wide
 - Cut on θ_n ($\theta_n=1.45\pm0.5^\circ$) and $\vec{p}_{miss}=\vec{p}_e+\vec{p}_p-\vec{p}_{e'}-\vec{p}_{\pi^+}$ (varies by Q^2 bin) to simulate removal of SIDIS background
 - New cut on difference between p_{miss} and detected ZDC angles implemented too, $|\Delta\theta| < 0.6^{\circ}$, $|\Delta\phi| < 3.0^{\circ}$
- \bullet $-t_{min}$ migrates with Q^2 as expected

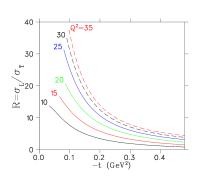
Simulation Results - Q^2 15 - 20 GeV^2

- Predicted $e'\pi^+n$ triple coincidence rate, binned in Q^2 and -t
 - 5 (e', GeV) on 100 (p, GeV) events
 - $\mathcal{L} = 10^{34} cm^{-2} s^{-1}$ assumed
 - \bullet -t bins are 0.04 GeV^2 wide
 - Cut on θ_n ($\theta_n=1.45\pm0.5^\circ$) and $\vec{p}_{miss}=\vec{p}_e+\vec{p}_p-\vec{p}_{e'}-\vec{p}_{\pi^+}$ (varies by Q^2 bin) to simulate removal of SIDIS background
 - New cut on difference between p_{miss} and detected ZDC angles implemented too, $|\Delta\theta| < 0.6^{\circ}$, $|\Delta\phi| < 3.0^{\circ}$
- \bullet $-t_{min}$ migrates with Q^2 as expected

Simulation Results - Q^2 30 - 35 GeV^2

- Predicted $e'\pi^+n$ triple coincidence rate, binned in Q^2 and -t
 - 5 (e', GeV) on 100 (p, GeV) events
 - $\mathcal{L} = 10^{34} cm^{-2} s^{-1}$ assumed
 - \bullet -t bins are 0.04 GeV^2 wide
 - Cut on θ_n ($\theta_n=1.45\pm0.5^\circ$) and $\vec{p}_{miss}=\vec{p}_e+\vec{p}_p-\vec{p}_{e'}-\vec{p}_{\pi^+}$ (varies by Q^2 bin) to simulate removal of SIDIS background
 - New cut on difference between p_{miss} and detected ZDC angles implemented too, $|\Delta\theta| < 0.6^{\circ}$, $|\Delta\phi| < 3.0^{\circ}$
- \bullet $-t_{min}$ migrates with Q^2 as expected

Isolating σ_L from σ_T in an e-p Collider


For a collider -

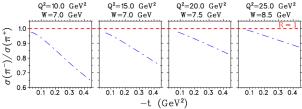
$$\epsilon = \frac{2(1-y)}{1+(1-y)^2}$$
 with $y = \frac{Q^2}{x(s_{tot} - M_N^2)}$

- y is the fractional energy loss
- Systematic uncertainties in σ_L magnified by $1/\Delta\epsilon$
 - \bullet Ideally, $\Delta\epsilon > 0.2$
- To access $\epsilon < 0.8$ with a collider, need $\gamma > 0.5$
 - \circ Only accessible at small s_{tot}
 - \circ Requires low proton energies ($\sim 10~GeV$), luminosity too low
- Conventional L-T separation not practical, need another way to determine σ_I

σ_L Isolation with a Model at the EIC

- QCD scaling predicts $\sigma_L \propto Q^{-6}$ and $\sigma_T \propto Q^{-8}$
- At the high Q^2 and W accessible at the EIC, phenomenological models predict $\sigma_L\gg\sigma_T$ at small -t
- Can attempt to extract σ_L by using a model to isolate dominant $d\sigma_L/dt$ from measured $d\sigma_{UNS}/dt$
- Critical to confirm the validity of the model used!

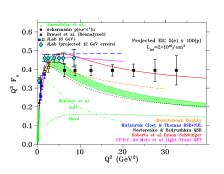
Predictions are assuming $\epsilon > 0.9995$ with the kinematic ranges seen earlier


T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

Model Validation via π^-/π^+ ratios

- Measure exclusive ${}^2H(e,e'\pi^+n)n$ and ${}^2H(e,e'\pi^-p)p$ in same kinematics as $p(e,e'\pi^+n)$
- π t-channel diagram is purely isovector \rightarrow G-Parity conserved

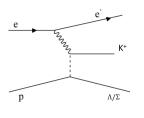
$$R = \frac{\sigma [n(e, e'\pi^{-}p)]}{\sigma [p(e, e'\pi^{+}n)]} = \frac{|A_V - A_S|^2}{|A_V - A_S|^2}$$


- R will be diluted if σ_T not small or if there are significant non-pole contributions to σ_L
- Compare R to model expectations

T.Vrancx, J. Ryckebusch, PRC 89(2014)025203

EIC F_π Data

- ECCE appears to be capable of measuring F_{π} to $Q^2 \sim 32.5~GeV^2$
- Error bars represent real projected error bars
 - 2.5% point-to-point
 - 12% scale
 - $\delta R = R$, $R = \sigma_L/\sigma_T$
 - R = 0.013 014 at lowest -t from VR model
- Uncertainties dominated by R at low Q²
- Statistical uncertainties dominate at high Q^2



- Results look promising, need to test π^- too
- More details in upcoming ECCE NIM paper

F_K at the EIC - Challenges and Possibilities

- \circ F_K at the EIC via DEMP will be extremely challenging
- Would need to measure two reactions
 - $p(e, e'K^+\Lambda)$
 - $p(e, e'K^+\Sigma)$
 - Need both for pole dominance tests

$$R = \frac{\sigma_L \left[p(e, e'K^+\Sigma^0) \right]}{\sigma_L \left[p(e, e'K^+\Lambda^0) \right]} \rightarrow R \approx \frac{g_{pK\Sigma}^2}{g_{pK\Lambda}^2}$$

- Consider just the Λ channel for now
 - Λ plays a similar role to neutron in π studies
 - Very forward focused, but, Λ will decay
 - \circ $\Lambda \rightarrow n\pi^0$ $\sim 36 \%$
 - \bullet $\Lambda \rightarrow p\pi^- \sim 64 \%$
 - Neutral channel potentially best option
 - Very challenging 3 particle final state

F_K at the EIC - Challenges and Possibilities

- Need to update DEMPGen with a kaon module
- Regina MSc student (Love Preet) is working on this module
 - Parametrisation based upon previous data and Vrancx/Ryckebusch Regge model guidance
 - http://rprmodel.ugent.be/calc/
- Use similar approach to pion model in generator
 - \circ Need Λ and Σ modules
- In parallel, will begin studies of Λ reconstruction in ZDC
 - Can use particle gun
 - ullet May need to use likelihood analysis for Λ reconstruction
 - Should also examine charged decay channel
- Kaon model updates and simulations will be focus over the summer

Form Factors at the EIC - Outlook

- EIC has the potential to push the Q^2 reach of F_{π} measurements into the 30 GeV^2 range
 - Can we measure F_K too?
- ullet F_{π} work already featured in the EIC yellow report
- Worked closely with the ECCE proto-collaboration
 - Carrying out feasibility studies
 - Existing DEMP event generator utilised
 - Kaon event generator and simulations in progress
 - Activities were a priority for the ECCE Diffractive and Tagging group
 - Will continue to develop simulations with Detector 1 collaboration
- Results from simulation have been written up in an ECCE analysis note and NIM paper
 - Expect to see this soon!

Thanks for listening, any questions?

Meson Structure Working Group - S.J.D. Kay, G.M. Huber, Z. Ahmed, Ali Usman, John Arrington, Carlos Ayerbe Gayoso, Daniele Binosi, Lei Chang, Markus Diefenthaler, Rolf Ent, Tobias Frederico, Yulia Furletova, Timothy Hobbs, Tanja Horn, Thia Keppel, Wenliang Li, Huey-Wen Lin, Rachel Montgomery, Ian L. Pegg, Paul Reimer, David Richards, Craig Roberts, Dmitry Romanov, Jorge Segovia, Arun Tadepalli, Richard Trotta, Rik Yoshida

EIC-Canada

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), FRN: SAPPJ-2021-00026

The University of Regina is situated on the territories of the nehiyawak, Anihsināpēk, Dakota, Lakota, and Nakoda, and the homeland of the Métis/Michif Nation. The University of Regina is on Treaty 4 lands with a presence in Treaty 6.