"Flux + Mutability": A Conditional Generative Approach to One-Class Classification and Anomaly Detection

James Giroux (uOttawa, URegina) Dr. Cristiano Fanelli (MIT, NSF AI Institute) Dr. Zisis Papandreou (URegina)

of Regina

June 06, 2022

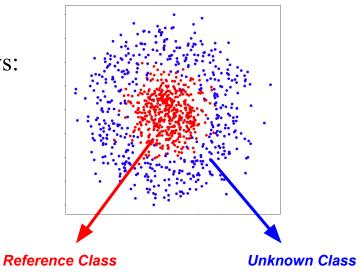
Outline

- One-Class Classification (OCC) and Anomaly Detection (AD)
- "Flux + Mutability" (F+M) A Conditional Generative Approach
- χ/n separation at GlueX OCC
- Standard Model(SM)/Beyond (BSM) Dijet Separation at LHC AD
- Summary

C. Fanelli, J. Giroux, Z. Papandreou, "Flux+Mutability": A Conditional Generative Approach to One-Class Classification and Anomaly Detection (2022). <u>https://arxiv.org/abs/2204.08609</u>

OCC and AD

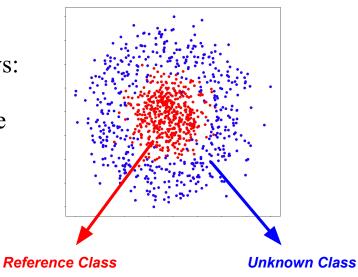
Suppose we have two classes distributed as follows:



OCC and AD

Suppose we have two classes distributed as follows:

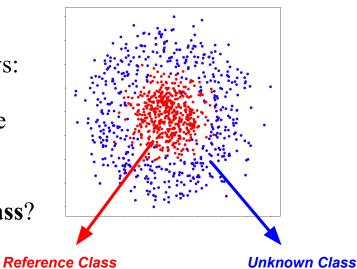
1. Can we use deep learning to separate the two more efficiently than standard rectangular cuts?

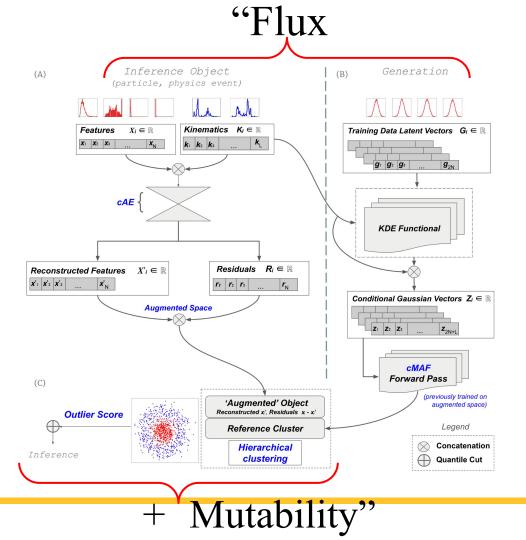


OCC and AD

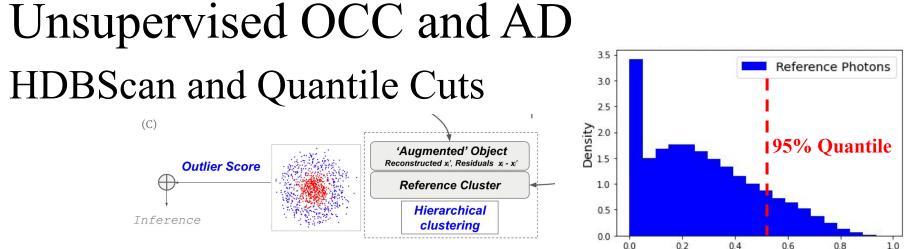
Suppose we have two classes distributed as follows:

- 1. Can we use deep learning to separate the two more efficiently than standard rectangular cuts?
- 2. Can we remain agnostic towards the **unknown class**?
 - Agnostic threshold selection



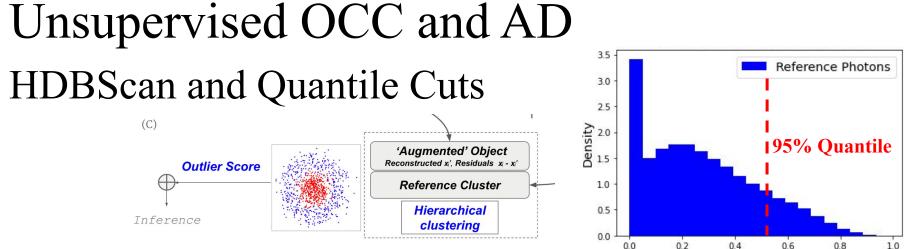


- (A) Inference Object fed through cAE
 - Features \bigotimes Kinematics
 - Reconstructions \bigotimes Residuals (x' x)
- (B) Continuous Conditional Generation
 - Pre-fit KDE Objects in kinematic bins
 - Map inference kinematics to KDE object
 - Sample new Gaussian vectors from restricted domain
 - Gaussian Vectors 🚫 Inference Kinematics
 - Conditionally generate reference population via cMAF
- (C) Compare inference object to **reference population** via Hierarchical clustering and quantile cuts



- Augment the inference particle into the reference cluster space
 Two notions of *membership* density based, distance based
- Combine the two PMF's and extract a probability of membership (P_{in})
- Define *Outlier Score* as complementary probability $P_{out} = 1 P_{in}$
- Extract reference population outlier score corresponding to a desired quantile

Outlier Score



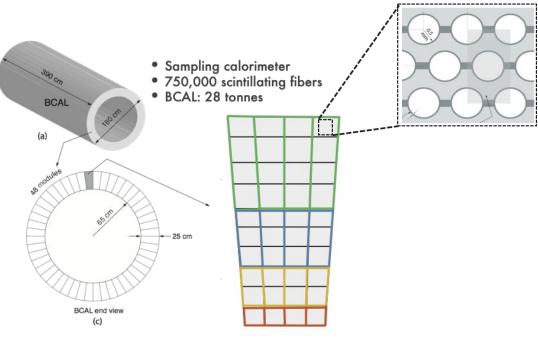
- Augment the inference particle into the reference cluster space
 Two notions of *membership* density based, distance based
- Combine the two PMF's and extract a probability of membership (P_{in})
- Define Outlier Score as complementary probability $P_{out} = 1 P_{in}$
- Extract reference population outlier score corresponding to a desired quantile

We have defined a dynamic threshold as function of the kinematics, completely agnostic towards the unknown class.

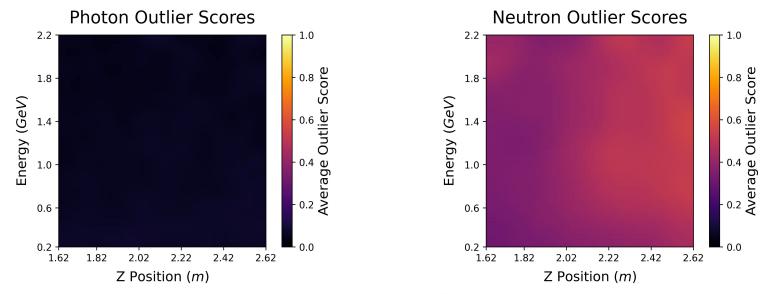
Outlier Score

y/n Separation at GlueX - OCC

- High confidence on **one class**
- Isolate highly active phase space within BCAL
- Reconstructed energy (E) and z position (z) as kinematic conditions
- Simulated photon (reference) and neutron (unknown) showers Geant4
- Strict preselection cuts
- Deploy fiducial cuts to extract only neutron showers which highly resemble photons
- 14 input features comprising of detector response variables



y/n Separation at GlueX - Results

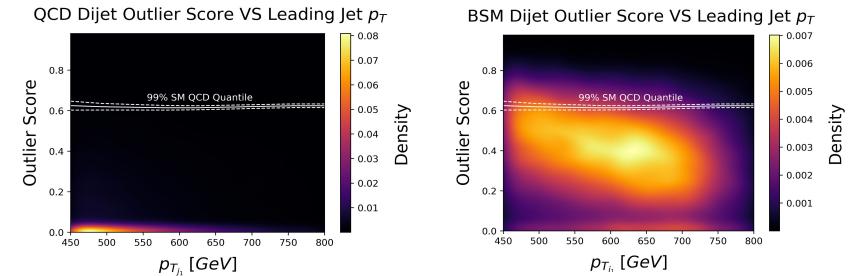


Quantile	TPR	TNR	
1σ (68%)	$68.28 \pm 0.18 ~\%$	$87.44 \pm 0.13\%$	
2σ (95%)	$95.09\pm0.08~\%$	$52.40 \pm 0.19\%$	
$3\sigma~(99\%)$	$98.97\pm0.04~\%$	${\bf 34.95} \pm {\bf 0.18\%}$	

BSM/SM Dijet Separation at LHC - AD

- Consider QCD dijet events as **reference**
- Isolate $Z' \rightarrow t\bar{t}$ dijets as **unknown**
- Publicly available <u>datasets</u> generated via *MADGRAPH* and *Pythia8* using the *DELPHES* framework for fast detector simulation
- Require leading jet transverse momenta 450 GeV < p_T < 800 GeV and sub-leading jet p_T > 200 GeV
- Consider leading jet p_T as single kinematic condition
- 15 input features
 - Remaining 4 vector properties of the leading jet and n-subjettiness variables
 - Sub-leading jet 4 vector and n-subjettiness variables

BSM/SM Dijet Separation at LHC - Results



Quantile	TPR	TNR
$1\sigma~(68\%)$	$68.18 \pm 0.22 \ \%$	$\textbf{93.20}\pm\textbf{0.06\%}$
$2\sigma~(95\%)$	$95.15\pm0.10~\%$	${\bf 42.40} \pm {\bf 0.22\%}$
$3\sigma~(99\%)$	$99.03\pm0.05\%$	$11.82 \pm 0.14\%$
Fiducial cuts (99%)	$98.92 \pm 0.05 ~\%$	$\textbf{2.35}\pm\textbf{0.06\%}$

	Ours	Fraser et al.	Cheng et al.
AUC	0.885 ± 0.003	0.87	0.89

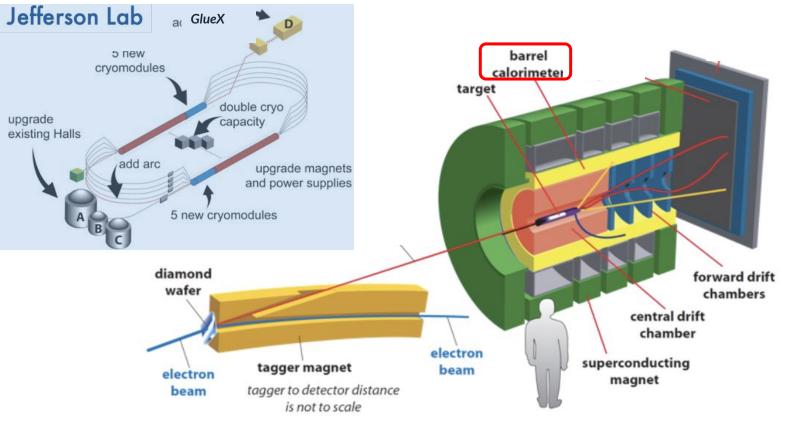
Summary

- Our architecture removes the need for semi-supervised approaches
 - Agnostic threshold selection
 - Totally unsupervised
- Highly dependable return rate (TPR = Quantile)
- Flexible deployable on various problems
- Lends itself naturally to the role of data monitoring within detectors

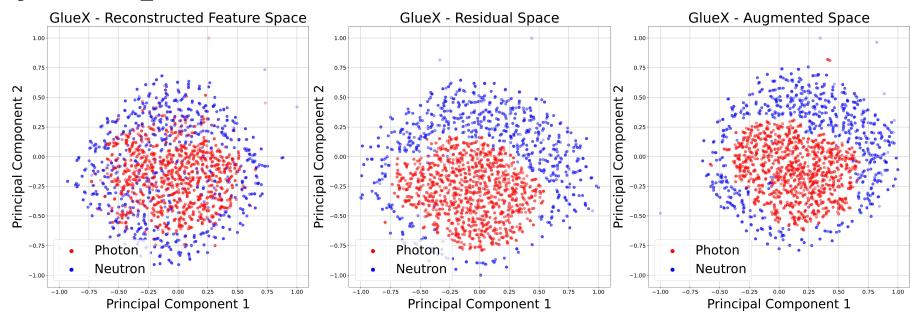
Thank you!

Backup Slides

The Beamline

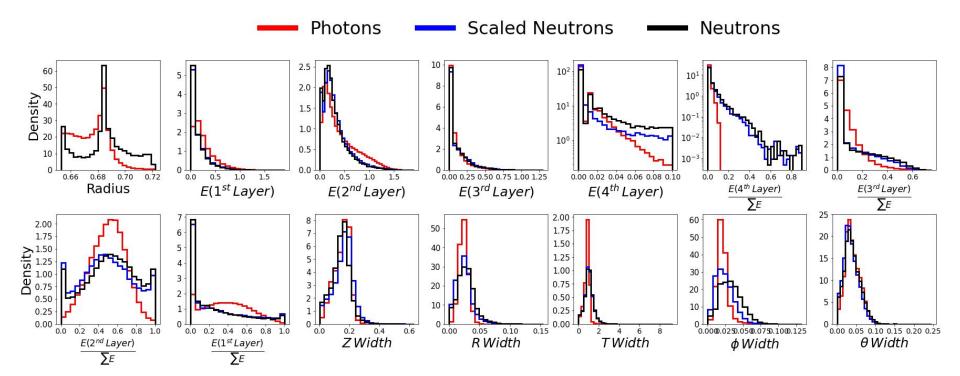


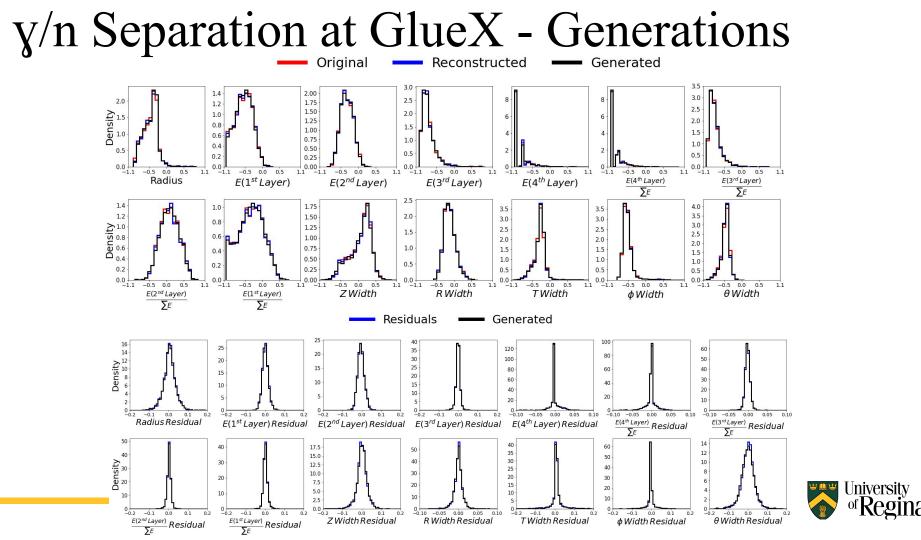
y/n Separation at GlueX - Residuals



Features localize the space, residuals push nested clusters radially outward.

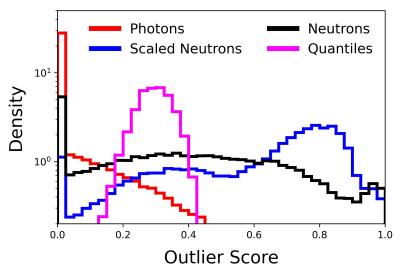
y/n Separation at GlueX - Features





Benefits of Conditional Learning

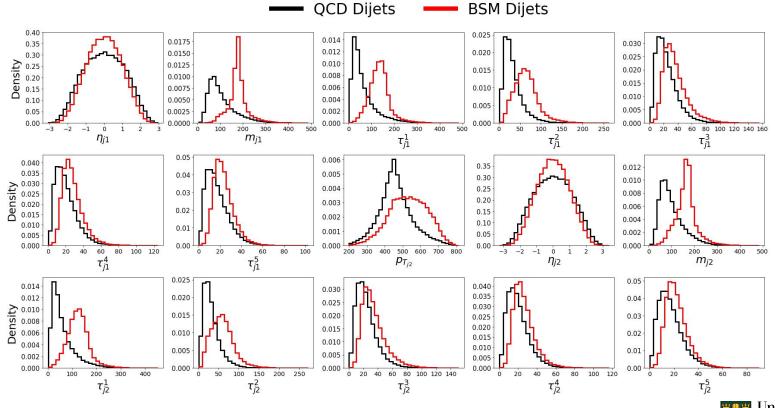
- Perturb neutrons such that they are almost indistinguishable from photons
 - Considered "Actual" detector response
- F+M trained on only photons
- XGBoost trained on unperturbed neutron sample along with photons
- XGBoost given access to E and z as features
- Neutron kinematic correlations picked up via F+M residuals - average outlier score increased



Simulation		lation	"Actual" Detector Response		
Algorithm	TPR	TNR	TPR	TNR	
XGBoost	$92.15 \pm 0.10\%$	$91.93 \pm 0.10\%$	$92.15 \pm 0.10\%$	$\textbf{78.82} \pm 0.15\%$	
F + M (Augmented)	$92.28 \pm 0.10\%$	$60.29 \pm 0.18\%$	$92.33 \pm 0.10\%$	$82.71 \pm 0.14\%$	
F + M (Features)	$92.34 \pm 0.10\%$	$56.14 \pm 0.19\%$	$92.34 \pm 0.10\%$	$50.30 \pm 0.19\%$	

Outlier Score Distributions

BSM/SM Dijet Separation at LHC - Features



^{of}Regina₂₀

BSM/SM Dijet Separation at LHC - Generations

