A Prototype Compact Accelerator-based Neutron Source for Canada for Medical and Scientific Applications

Dalini D. Maharaj

2022 CAP Congress – Monday 6th June 2022

A Prototype Compact Accelerator-based Neutron Source for Canada for Medical and Scientific Applications

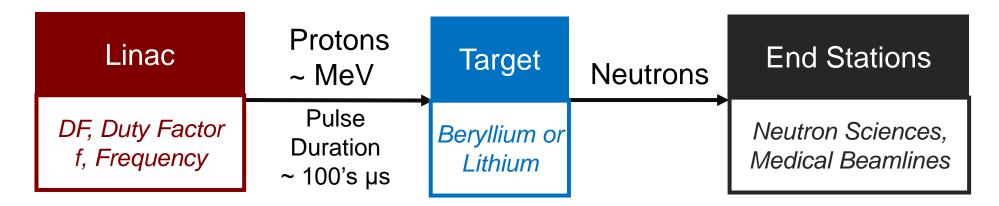
Dalini D. Maharaj

2022 CAP Congress – Monday 6th June 2022

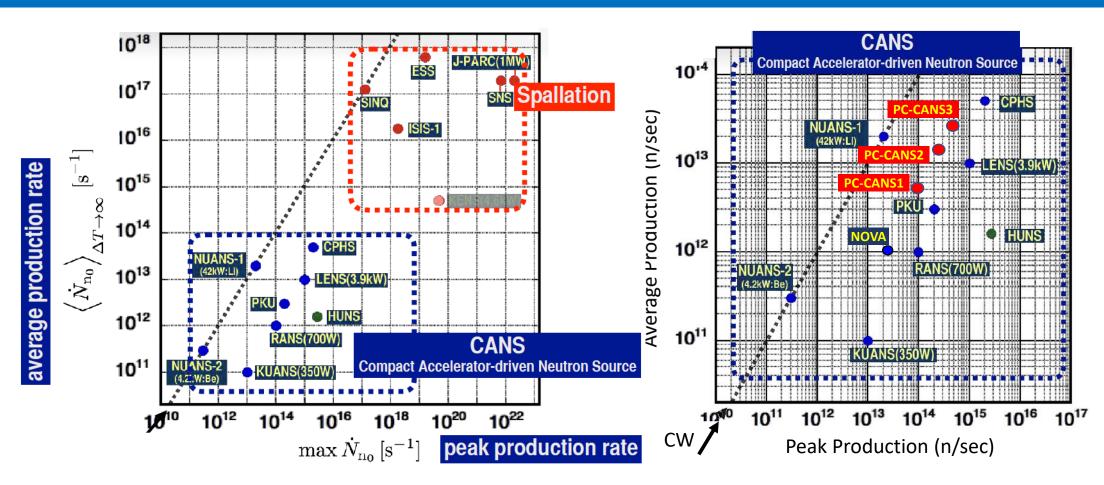
Overview

- Why does Canada need neutrons?
- Overview of Compact Accelerator-based Neutron Sources (CANS)
- The Prototype Canadian CANS
- Objectives of Target Moderator Reflector Optimization
- Current Studies and Outlook

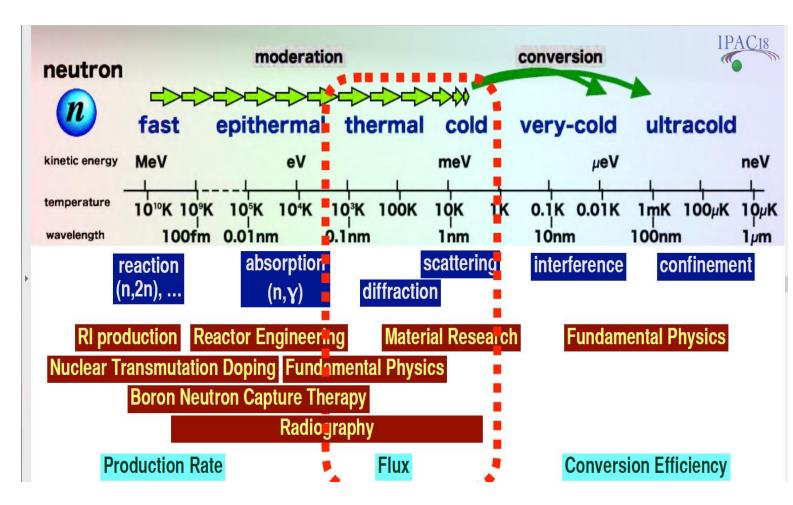
Current Status of Neutron Beams in Canada


- Neutron Gap National Research Universal (NRU) reactor shut down in 2018
- McMaster Nuclear Reactor only source of neutron beams in Canada

- Similar story globally major research reactors closed e.g. BER-II, JEEP and Orphée
- Need new (affordable) pathways for neutron production
- Demand for high brilliance, pulsed neutron beams in Canada


The Compact Accelerator-based Neutron Source (CANS) Concept

Advantages


- I. Compact less shielding required
- II. Lower cost when compared with reactor and spallation sources
- III. High brilliance, pulsed neutron beams realized
- IV. Scalable technology via
 - Boosting proton energy
 - Increasing accelerator current

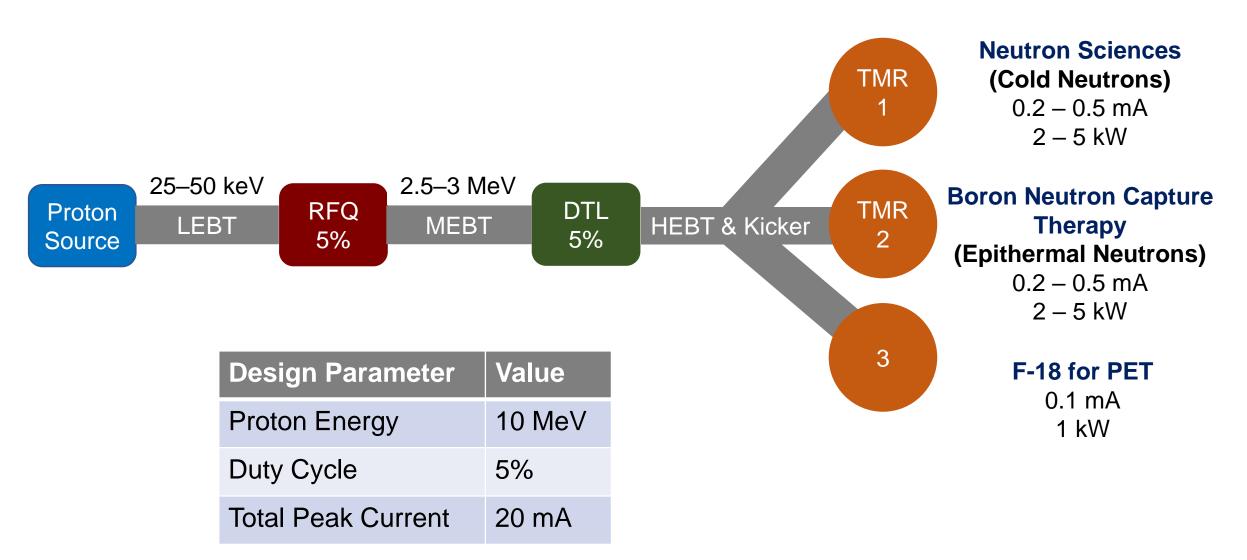
Global Neutron Landscape

- CANS provide neutrons to serve most user needs
- PC CANS designed to be competitive against similar scale sources

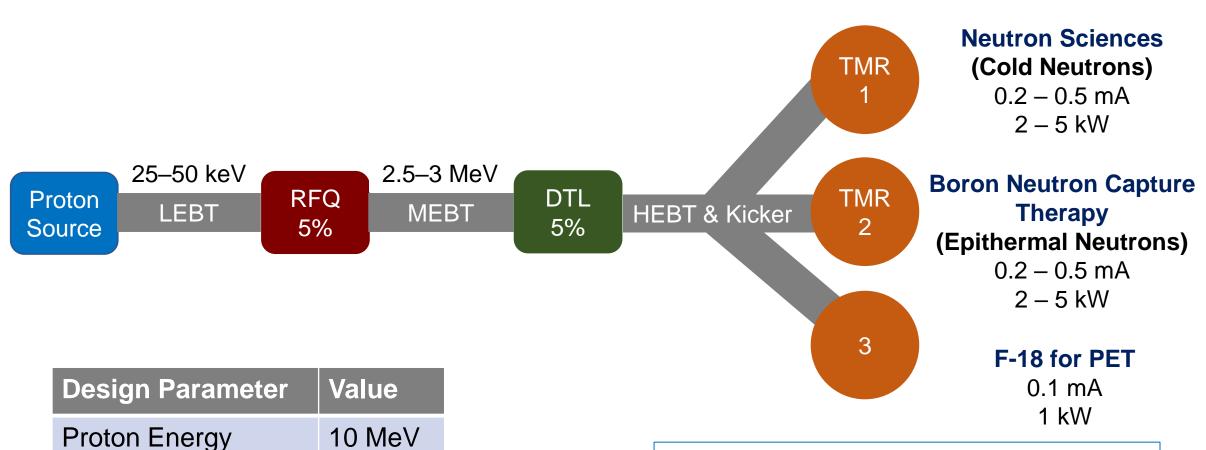
Neutron Beam Applications

Neutron Sciences

I. Thermal Neutrons 10 meV < E < 100 meV e.g. diffraction to resolve crystal structures ~ Angstroms


II. Cold Neutrons

E < 10 meV


e.g. large scale structures

Boron Neutron Capture Therapy (BNCT)
Epithermal Neutrons
0.5 eV < E < 10 keV

Overview and Objectives of the PC CANS

Overview and Objectives of the PC CANS

 Details of linac conceptual designs see Mina Abbaslou's talk Today at 4:30pm in the DAPI session, M3-6

2022-06-07

Duty Cycle

Total Peak Current

5%

20 mA

Performance at End Stations

	NOVA	PC-CANS 1	PC-CANS 2	PC-CANS 3
Neutron yield average	9.6 × 10 ¹¹	4.8 × 10 ¹²	1.2 × 10 ¹³	2.4 × 10 ¹³
Neutron yield peak	2.4×10^{13}	9.6 × 10 ¹³	2.4 × 10 ¹⁴	4.8 × 10 ¹⁴
SANS yield n/s	7.0 × 10 ⁴	3.5 × 10 ⁵	9 × 10 ⁵	1.8 × 10 ⁶
BNCT n/s average		1 × 10 ⁸	2.5 × 10 ⁸	5 × 10 ⁸
18F saturated yield (GBq)		240		

- **I. Small-angle neutron scattering** High brilliance, pulsed, cold neutron beams of duration, 0.1-0.8 ms, at repetition rates of \approx 50 Hz
- II. Boron Neutron Capture Therapy Therapeutic epithermal neutron flux of $> 1 \times 10^8$ n/s are possible, enabling a BNCT R&D station
- III. F-18 Isotope Production for PET Competitive rates for F-18 production

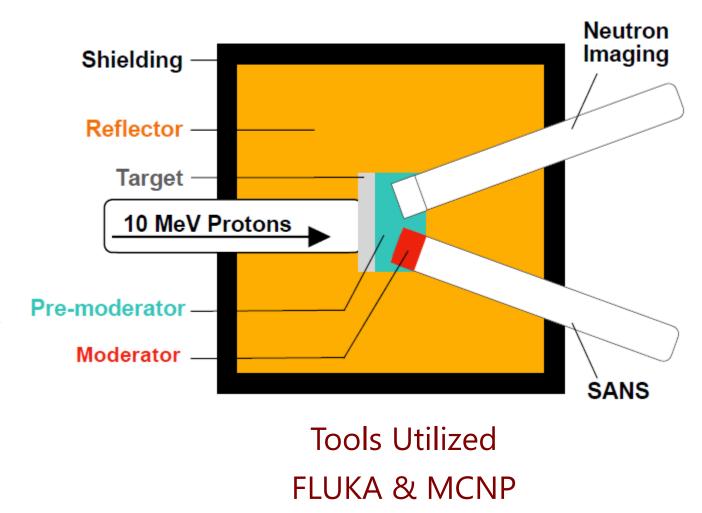
Performance at End Stations

	NOVA	PC-CANS 1	PC-CANS 2	PC-CANS 3
Neutron yield average	9.6 × 10 ¹¹	4.8 × 10 ¹²	1.2 × 10 ¹³	2.4 × 10 ¹³
Neutron yield peak	2.4×10^{13}	9.6 × 10 ¹³	2.4×10^{14}	4.8 × 10 ¹⁴
SANS yield n/s	7.0 × 10 ⁴	3.5 × 10 ⁵	9 × 10 ⁵	1.8 × 10 ⁶
BNCT n/s average		1 × 10 ⁸	2.5 × 10 ⁸	5 × 10 ⁸
18F saturated yield (GBq)		240		

- **I. Small-angle neutron scattering** High brilliance, pulsed, cold neutron beams of duration, 0.1-0.8 ms, at repetition rates of \approx 50 Hz
- II. Boron Neutron Capture Therapy Therapeutic epithermal neutron flux of > 1×10⁸ n/s are possible, enabling a BNCT R&D station
- III. F-18 Isotope Production for PET Competitive rates for F-18 production

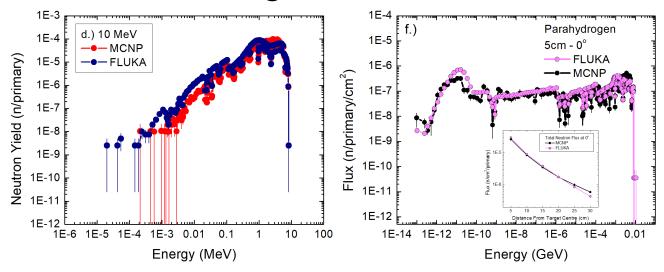
TMR
Optimization
Important

Baseline Target Moderator Reflector (TMR) System for Neutron Sciences


Beryllium Target – Produces neutrons via stripping reactions

Pre-moderator – slows neutrons from ~ MeV to thermal energies ~10-100 meV

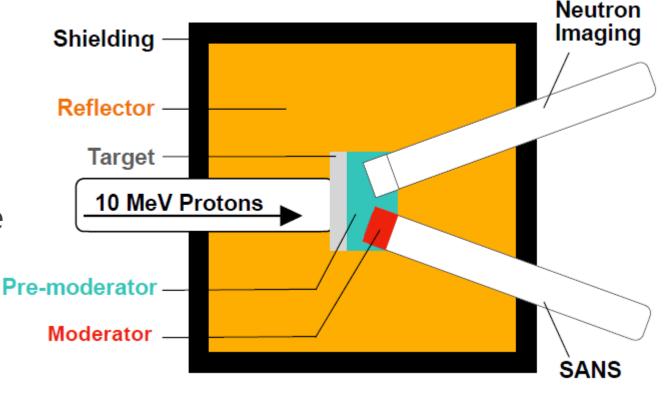
Moderator – slows thermal neutrons to cold energies < 10 meV


Reflector – backscatters high energy neutrons for further moderation

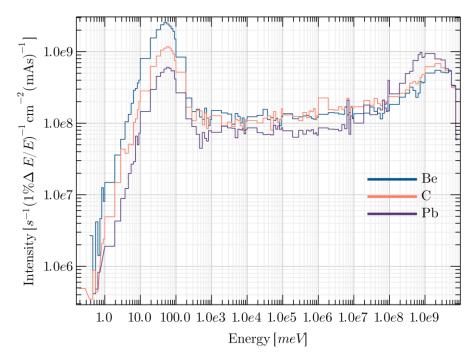
Shielding – protects users from exposure to harmful radiation

Simulation Tools for Target Moderator Optimization

- FLUKA optimized for high energy particle transport but agrees well at 10 MeV
- Custom cross sections for moderator materials in MCNP
- Target-Moderator-Reflector studies for cold neutron beamlines in MCNP
- Target development and shielding studies in FLUKA

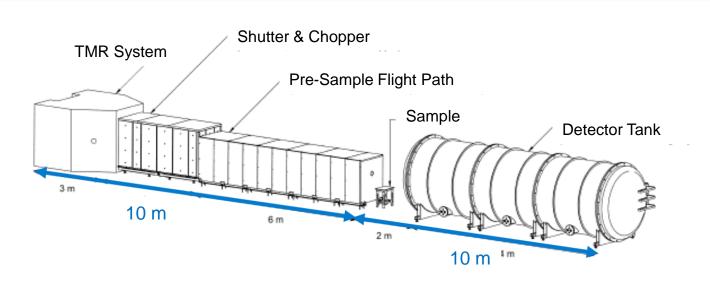


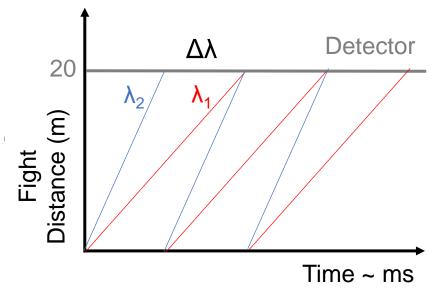
[1] R. Laxdal, Journal of Neutron Research 23 99-117, (2021).


[2] D. D. Maharaj et al, arXiv:2205.01662v1 [physics.acc-ph] (2022).

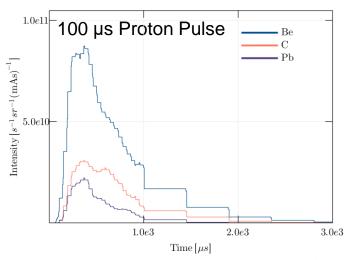
Objectives of Target Moderator Reflector Design & Optimization

- Optimize neutron yields
- Optimize neutron time structure and spectra
- (i) Each neutron instrument has its own requirements for pulse structure
- (ii) Influence of proton time structure on neutron time structure
- (ii) Materials selected for TMR affect neutron time structure and neutron spectrum delivered


Influence of Reflector Selection on Neutron Yield

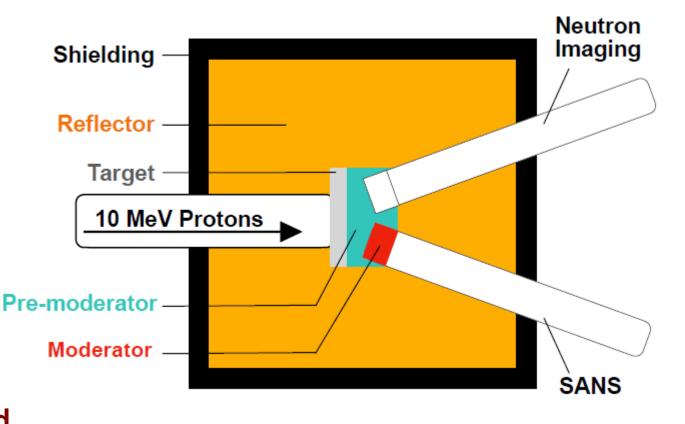


Neutron flux for Mesitylene cold moderator (n/cm²/mC/s)						
	Lead	Graphite	Beryllium			
Cold Flux	3.92×10^{7}	1.09×10^{8}	2.68×10^{8}			
Thermal Flux	8.07×10^8	1.70×10^{9}	3.88×10^{9}			
Total Flux	4.39×10^{9}	5.82×10^{9}	7.99×10^{9}			


- Performance Be > C > Pb with respect to neutron yield
- Beryllium and graphite,
 - Fast neutron spectrum is significantly suppressed
 - Thermal neutron yields are higher

Matching Proton Pulse Structures with SANS Requirements

- 20 m SANS instrument delivers cold neutron bandwidth, $\lambda_1 < \Delta \lambda < \lambda_2$
- Proton pulse duration, source frequency and duty factor, chosen to ensure neutron pulses (or frames) are well separated when they arrive at the detector



Summary of TMR Objectives & Funding Prospects

I. Current Activities in TMR Optimization

- Evaluation of neutron pulse duration for SANS instrument
- Optimize material thicknesses for baseline design for two tube arrangement
- Evaluate SANS instrument performance based on optimized solution
- II. CFI application to be submitted in July 2022

III. Conceptual design report to be released in June/July 2022.

16

Acknowledgments

Mina Abbaslou (TRIUMF/UVic)

Sana Tabbassum (Purdue)

Marco Marchetto (TRIUMF)

Zahra Yamani (CNL)

Vinicius Anghel (CNL)

Zin Tun (TVB Associates)

Alexander Gottberg (TRIUMF/UVic)

Robert Laxdal (TRIUMF/UVic)

Oliver Kester (TRIUMF/UVic)

Drew Marquardt (UWindsor)

This work is supported by NFRF-E Grant Number NFRFE-2018-00183

Canadiens