FeynArtsHelper

Reefat, A. Aleksejevs, S. Barkanova

Memorial University of Newfoundland and Labrador reefat@mun.ca

CAP Congress 2022 June 6, 2022

Introduction

In this presentation:

- Talk about the motivation behind the project from the:
- physics perspective
- computational perspective
- Introduce you to a newly developed Mathematica package: FeynArtsHelper.
- Provide several examples to show how FeynArtsHelper can be used to extract several important features of Feynman diagrams.

Motivation: point of view of Physics

- To look for new physics beyond the standard model we use:

HIERARCHY PROBLEM
ASYMMETRY
GRAVITY
EXPANDING UNIVERSE

- The Energy Frontier: High energy colliders.
- The Intensity Frontier: intense particle beams.
- The Cosmic Frontier: underground experiments, ground and space based telescopes.

Feynman Diagrams

- Calculating the matrix element from first principles is cumbersome-not usually a way to go
- Using Feynman diagram, we can approximate the matrix-element.
- Each Feynman diagram represents a term in perturbation expansion of amplitude which is related to observables, such as the differential cross-section

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\left(\frac{1}{8 \pi}\right)^{2} \frac{|\mathcal{M}|^{2}}{\left(E_{1}+E_{2}\right)^{2}} \frac{\left|p_{f}\right|^{2}}{\left|p_{i}\right|^{2}} \tag{1}
\end{equation*}
$$

- A full matrix element contains an infinite number of Feynman diagrams sorted by perturbation ordering

$$
\begin{equation*}
M_{\mathrm{fi}}=M_{1}+M_{2}+M_{3}+. . \tag{2}
\end{equation*}
$$

Feynman diagram to Observables

Figure 1: Feynman diagrams for an scattering experiment.

- To access the scale of new physics at TeV level, we need to push one or more experimental parameters to the extreme precision.
- We can predict outcomes of Figure (1) by calculating asymmetry

$$
\begin{equation*}
A_{\mathrm{LR}}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}} \sim \frac{2 \operatorname{Re}\left(M_{\gamma} M_{Z}^{+}+M_{\gamma} M_{N P}^{+}+M_{Z} M_{N P}^{+}\right)_{\mathrm{LR}}}{\sigma_{L}+\sigma_{R}} \tag{4}
\end{equation*}
$$

where M_{i} is the amplitude of the $i^{\text {th }}$ diagram and $M_{N P}$ is the amplitude of diagram with $Z^{\prime}-\gamma^{\prime}$ interaction. ${ }^{a}$

[^0]
Why do we need another package?

Figure 2: Steps in calculating observables using computer algebra.

Introduction to FeynArtsHelper ${ }^{7}$

This is a Mathematica package which will help you with calculations.

- It works in conjunction with existing packages such as FeynArts ${ }^{3}$, FeynCalc ${ }^{8}$, LoopTools ${ }^{2}$, X^{6}, etc.
- It will help in reducing some repetitive calculations that the other packages does not already do.
- Primarily, it will help us writing the model files for FeynArts.
- Automating will streamline the process of going from Lagrangian to observables.

Deriving a Propagator using FeynArtsHelper I

Feynman rules requires repetitive, cumbersome and lengthy calculations. The general rules for deriving couplings and propagators are:

- Find the kinetic and mass term of the Lagrangian density for propagator and interaction terms for coupling.
- Write down the Lagrangian in momentum space $\left(\partial_{\mu} \mapsto-i p_{\mu}\right)$ where p_{μ} is the associated field momentum.
- Evaluate the functional derivative
$\mathbb{B}=\frac{\delta^{(n)}}{\delta v_{1}\left(k_{1}\right) \ldots \delta v_{n}\left(k_{n}\right)} \int d^{4} \times \mathcal{L}$, where v_{i} is a field with momentum k_{i}.
- For propagator: $\Pi=-i \mathbb{B}^{-1}$
- For coupling: $\Gamma=-i \mathbb{B}$

Deriving a Propagator using FeynArtsHelper II

As an example, we derive the the fermion propagator from the Lagrangian

$$
\begin{align*}
& \mathcal{L}_{\text {qed }}=\bar{\psi}(i \not D-m) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{6}\\
& \mathbb{S}= \int d^{4} \times \mathcal{L}_{\text {fermion }} \\
&= i \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi \\
&=\int d^{4} k_{1} d^{4} k_{2} d^{4} \times\left[\bar{\psi}\left(k_{1}\right) \gamma^{\mu} i\left(-i k_{2 \mu}\right) \psi\left(k_{2}\right)\right. \tag{7}\\
&\left.-m_{f} \bar{\psi}\left(k_{1}\right) \psi\left(k_{2}\right)\right] \delta^{(4)}\left(k_{2}-k_{1}\right)
\end{align*}
$$

Deriving a Propagator using FeynArtsHelper III

Then taking the functional derivative (skipping several algebraic simplifications) we get

$$
\begin{align*}
\frac{\delta^{2} \mathbb{S}}{\delta \bar{\psi}\left(p_{1}\right) \delta \psi\left(p_{2}\right)}= & \int d^{4} k_{1} d^{4} k_{2}\left[\delta^{(4)}\left(p_{1}-k_{1}\right) \gamma^{\mu} k_{2 \mu} \delta^{(4)}\left(p_{2}-k_{2}\right)\right. \\
& \left.-m \delta^{(4)}\left(p_{1}-k_{1}\right) \delta^{(4)}\left(p_{2}-k_{2}\right)\right] \delta^{(4)}\left(k_{2}-k_{1}\right) \tag{8}\\
& k_{1}=k_{2}=p \\
= & \gamma^{\mu} p_{\mu}-m
\end{align*}
$$

After inverting $\frac{\delta^{2} S}{\delta \bar{\psi}\left(p_{1}\right) \delta \psi\left(p_{2}\right)}$ we get

$$
\begin{equation*}
\Pi_{\text {fermion }}=i \frac{\gamma^{\mu} p_{\mu}+m}{p^{2}-m^{2}} \tag{9}
\end{equation*}
$$

Deriving a Propagator using FeynArtsHelper IV

Now, if we consider the spin-3/2 baryon resonances field described by the Rarita-Schwinger Lagrangian

$$
\begin{equation*}
\mathcal{L}=\bar{\psi}^{\alpha} \wedge_{\alpha \beta} \psi^{\beta} \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
\Lambda_{\alpha \beta}= & -\left(-i \partial_{\mu} \gamma^{\mu}+M\right) g_{\alpha \beta}+i A\left(\gamma_{\alpha} \partial_{\beta}+\gamma_{\beta} \partial_{\alpha}\right) \\
& +\frac{i}{2}\left(3 A^{2}+2 A+1\right) \gamma_{\alpha} \partial^{\mu} \gamma_{\mu} \gamma_{\beta}+M\left(3 A^{2}+3 A+1\right) \gamma_{\alpha} \gamma_{\beta} \tag{11}
\end{align*}
$$

In case $A=-1^{1}$ we get:

$$
\begin{align*}
D_{\alpha \beta} & =-\left[(-k+m) g_{\alpha \beta}+\left(\gamma_{\alpha} k_{\beta}-\gamma_{\beta} k_{\alpha}\right)-\gamma_{\alpha} k \gamma_{\beta}-m \gamma_{\alpha} \gamma_{\beta}\right] \tag{12}\\
& =-(-k+m) g_{\alpha \beta}+\gamma_{\alpha} k_{\beta}-\gamma_{\beta} k_{\alpha}-\gamma_{\alpha} k \gamma_{\beta}-m \gamma_{\alpha} \gamma_{\beta}
\end{align*}
$$

Deriving a Propagator using FeynArtsHelper V

One form of a generalized second rank tensor which satisfies (all properties*) is given by

$$
\begin{equation*}
\Pi^{\beta \delta}=a_{1} g^{\beta \delta}+a_{2} \gamma^{\beta} k^{\delta}+a_{3} \gamma^{\delta} k^{\beta}+a_{4} \gamma^{\beta} \gamma^{\delta}+a_{5} k^{\beta} k^{\delta} \tag{13}
\end{equation*}
$$

such that

$$
\begin{equation*}
D_{\alpha \beta} \cdot \Pi^{\beta \delta}=g_{\beta}^{\delta} \tag{14}
\end{equation*}
$$

- Doing it by hand is tedious.
- Using few lines of code on FeynArtsHelper it can be derived.
${ }^{1}$ Lagrangian must be invariant under point transformation, so $A^{\prime}=\frac{A-2 x}{1+4 x}$ with $a \neq-\frac{1}{4}$

```
In[-]:= rsLagrangian =
    -QuantumField[\psi1, {\alpha}]
            ((-I * GA [\gamma] \ QuantumField[FCPartialD[\gamma],\psi2,{\beta}]\timesMT [\alpha,\beta] +
                    m MT [\alpha, \beta] \QuantumField[\psi2, {\beta}]) -
            I (-GA[\alpha] \QuantumField[FCPartialD[\beta], \psi2, {\beta}]-
                QuantumField[FCPartialD[\alpha], \psi2, {\beta}]\timesGA[\beta]) -
```



```
                    mGA[\alpha]\timesGA[\beta]\timesQuantumField[\psi2, {\beta}]) // ExpandAll
Out[ []= -i\psi l }\mp@subsup{|}{\alpha}{}\mp@subsup{\overline{\gamma}}{}{\beta}((\mp@subsup{\partial}{\alpha}{}\psi\mp@subsup{2}{\beta}{}))-i\psi\mp@subsup{1}{\alpha}{}\mp@subsup{\overline{\gamma}}{}{\alpha}((\mp@subsup{\partial}{\beta}{}\psi\mp@subsup{2}{\beta}{}))+i\mp@subsup{\overline{\gamma}}{}{\gamma}\psi\mp@subsup{1}{\alpha}{}\mp@subsup{\overline{\gamma}}{}{\alpha}\mp@subsup{\overline{\gamma}}{}{\beta}((\mp@subsup{\partial}{\gamma}{}\psi\mp@subsup{2}{\beta}{}))
    i}\mp@subsup{\overline{\gamma}}{}{\gamma}\psi\mp@subsup{1}{\alpha}{}\mp@subsup{\overline{g}}{}{\alpha\beta}((\mp@subsup{\partial}{\gamma}{}\psi\mp@subsup{2}{\beta}{}))-m\psi\mp@subsup{1}{\alpha}{}\psi\mp@subsup{2}{\beta}{}\mp@subsup{\overline{g}}{}{\alpha\beta}+m\psi\mp@subsup{1}{\alpha}{}\psi\mp@subsup{2}{\beta}{}\mp@subsup{\overline{\gamma}}{}{\alpha}\mp@subsup{\overline{\gamma}}{}{\beta
In[v]:= quadForm2FromLag =
        FCReplaceAll[
            FAHFeynmanRules[rsLagrangian,
                {{QuantumField[\psi1, {\rho}][k1], QuantumField[\psi2, {\sigma}][k2]}}] //
            DiracSimplify, {k1 -> k, k2 }->\textrm{k},\rho->\alpha,\sigma->\beta}]\llbracket1\rrbracket// FC
Out[ \(\cdot]=\bar{g}^{\alpha \beta} \bar{\gamma} \cdot \bar{k}-m \bar{g}^{\alpha \beta}+\bar{\gamma}^{\alpha}\left(-\bar{k}^{\beta}\right)-\bar{\gamma}^{\beta} \bar{k}^{\alpha}+\bar{\gamma}^{\alpha} \bar{\gamma}^{\beta} \bar{\gamma} \cdot \bar{k}+m \bar{\gamma}^{\alpha} \bar{\gamma}^{\beta}\)
```

$$
\ln [-]:=\operatorname{struc} 2=\{\mathrm{MT}[\alpha, \beta], \operatorname{GA}[\alpha] * \mathrm{FV}[\mathrm{k}, \beta], \mathrm{GA}[\beta] * \mathrm{FV}[\mathrm{k}, \alpha], \mathrm{GA}[\alpha] * \mathrm{GA}[\beta],
$$ $\operatorname{FV}[k, \alpha]$ * $\operatorname{FV}[k, \beta]\}$

Out[-$]=\left\{\bar{g}^{\alpha \beta}, \bar{\gamma}^{\alpha} \bar{k}^{\beta}, \bar{\gamma}^{\beta} \bar{k}^{\alpha}, \bar{\gamma}^{\alpha} \bar{\gamma}^{\beta}, \bar{k}^{\alpha} \bar{k}^{\beta}\right\}$
$\ln [\varepsilon]:=\operatorname{pg} 2=$ GetPropagator [quadForm2FromLag, struc2, $\{\alpha \rightarrow \beta, \beta \rightarrow \delta\}] / /$ Simplify
Out[$\cdot]=-\frac{(\bar{\gamma} \cdot \bar{k}+m)\left(m\left(-3 m \bar{g}^{\beta \delta}+\bar{\gamma}^{\beta}\left(-\bar{k}^{\delta}\right)+m \bar{\gamma}^{\beta} \bar{\gamma}^{\delta}\right)+\bar{k}^{\beta}\left(4 \bar{k}^{\delta}-m \bar{\gamma}^{\delta}\right)\right)}{3 m^{2}\left(\bar{k}^{2}-m^{2}\right)}$
$\ln [\cdot]:=\operatorname{str} 1=$ GenPropInternal[pg1, V[3], $\lambda,\{\beta \rightarrow$ li1,$\delta \rightarrow$ li2, $k \rightarrow$ mom $\}]$
Out[\cdot] = -FourVector[mom,li1] FourVector[mom,li2] PropagatorDenomiator[mom,Mass[V[3]]] PropagatorDenomiator[mom,Sqrt[ג]Mass[V[3]] (1 - Sqrt[GaugeXi[V[3]]]) MetricTensor[lil,li2] PropagatorDenomiator[mom,Mass[V[3]]]

Toy Model: Deriving counter-term Lagrangian I

Suppose we have a Lagrangian with an fermion electric dipole moment extension as follows:

$$
\begin{equation*}
\mathcal{L}=\overbrace{\bar{\psi}(i \not D-m) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}}^{\mathcal{L}_{\text {QED }}}-\underbrace{\frac{d_{f}}{2}\left(\bar{\psi} i \gamma_{5} \sigma^{\mu \nu} \psi\right) F_{\mu \nu}}_{\mathcal{L}_{\text {Dipole }}} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
\not D=\gamma^{\alpha}\left(\partial_{\alpha}+i e A_{\alpha}\right), \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \text { and } \sigma_{\mu \nu}=\frac{i}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right] . \tag{16}
\end{equation*}
$$

- Extract Lagrangian and counter-term Lagrangian.
- Use built-in Mathematica operators to calculate renormalization constants using Ward-Takahashi identities and renormalization. conditions.

```
ln[v]:= lagDipole =
    I * QuantumField [\psi1] * GA [ }\mu\mathrm{ ] * QuantumField [FCPartialD[ }\mu],\psi2] 
        e * QuantumField [ }\psi1] * GA [ [ ] * QuantumField [A, { / }] * QuantumField[\psi2] -
        m* QuantumField [ }\psi1\mathrm{ ] * QuantumField[ }\psi2\mathrm{ ] -
        \frac{1}{4}* (QuantumField[FCPartialD[\mu], A, {v}] -
        QuantumField[FCPartialD[v], A, {\mu}]) *
        (QuantumField[FCPartialD[ }\mu],A,{v}]
            QuantumField[FCPartialD[v], A, {\mu}]) -
        de
        ((QuantumField[\psi1] * GA[5] * DiracSigma[GA[\mu], GA[v]] * QuantumField[\psi2]) *
            QuantumField[FCPartialD[ }\mu],\textrm{A},{v}]
            (QuantumField[\psi1] * GA[5] * DiracSigma[GA[\mu], GA[v]] * QuantumField[\psi2]) *
            QuantumField[FCPartialD[v], A, {\mu}]) // Expand // Simplify
out[-]= \frac{1}{4}(-((\mp@subsup{\partial}{\mu}{}\mp@subsup{A}{v}{})-(\mp@subsup{\partial}{v}{}\mp@subsup{A}{\mu}{})\mp@subsup{)}{}{2}+\psi1(\psi2(2\operatorname{de}\mp@subsup{\overline{\gamma}}{}{5}\mp@subsup{\sigma}{}{\muv}((\mp@subsup{\partial}{\nu}{}\mp@subsup{A}{\mu}{})-(\mp@subsup{\partial}{\mu}{}\mp@subsup{A}{v}{}))+4e\mp@subsup{A}{\mu}{}\mp@subsup{\overline{\gamma}}{}{\mu}-4m)+4i\mp@subsup{\overline{\gamma}}{}{\mu}((\mp@subsup{\partial}{\mu}{}\psi2))))
```

In[$[\mathrm{f}:=$ ctlagDipole[0] = GetCounterTermLagrangian[lagDipole, $\{\mathrm{e}, \mathrm{m}, \mathrm{de}\}] / /$ Simplify out[[$]=\frac{1}{4}\left(-\operatorname{de} \psi 1 \psi 2 \bar{\gamma}^{5} \sigma^{\mu \nu}\left(\left(\partial_{\mu} A_{v}\right)-\left(\partial_{v} A_{\mu}\right)\right)\left(\delta \mathrm{z}_{2}{ }^{A}+2 \delta \mathrm{z}_{1}{ }^{\text {de }}+\delta \mathrm{z}_{2}{ }^{\psi 1}+\delta \mathrm{z}_{2}{ }^{\psi 2}\right)+\right.$

$$
\begin{aligned}
& 2 \psi 1 \bar{\gamma}^{\mu}\left(e \psi 2 A_{\mu}\left(\delta \mathrm{z}_{2}{ }^{A}+2 \delta \mathrm{z}_{1}{ }^{e}+\delta \mathrm{z}_{2}{ }^{\psi 1}+\delta \mathrm{z}_{2}^{\psi 2}\right)+i\left(\left(\partial_{\mu} \psi 2\right)\right)\left(\delta \mathrm{z}_{2}{ }^{\psi 1}+\delta \mathrm{z}_{2}{ }^{\psi 2}\right)\right)-\delta \mathrm{z}_{2}{ }^{A}\left(\left(\partial_{\mu} A_{v}\right)\right)^{2}+ \\
& \left.2 \delta \mathrm{z}_{2}^{A}\left(\left(\partial_{\nu} A_{\mu}\right)\right)\left(\left(\partial_{\mu} A_{v}\right)\right)-\delta \mathrm{z}_{2}{ }^{A}\left(\left(\partial_{v} A_{\mu}\right)\right)^{2}-4 m \psi 1 \psi 2 \delta \mathrm{z}_{1}^{m}-2 m \psi 1 \psi 2 \delta \mathrm{z}_{2}{ }^{\psi 1}-2 m \psi 1 \psi 2 \delta \mathrm{z}_{2}{ }^{\psi 2}\right)
\end{aligned}
$$

ctrulesDipole =
FeynmanRulesLagrangian[ctlagDipole[0], possibleFieldCombDipole] // Simplify

$$
\begin{array}{r}
\text { Out[}[]=\left\{\frac { 1 } { 4 } \left(\operatorname{de} \bar{\gamma}^{5} \bar{\gamma}^{\alpha} \cdot(\bar{\gamma} \cdot \bar{p})\left(2 \delta \mathrm{z}_{1}{ }^{\mathrm{de}}+\delta \mathrm{z}_{2}{ }^{\gamma}+2 \delta \mathrm{z}_{2}{ }^{\psi}\right)-\operatorname{de} \bar{\gamma}^{5}(\bar{\gamma} \cdot \bar{p}) \cdot \bar{\gamma}^{\alpha}\left(2 \delta \mathrm{z}_{1}{ }^{\mathrm{de}}+\delta \mathrm{z}_{2}{ }^{\gamma}+2 \delta \mathrm{z}_{2}{ }^{\psi}\right)+\right.\right. \\
\left.\left.2 e \bar{\gamma}^{\alpha}\left(2 \delta \mathrm{z}_{1}{ }^{e}+\delta \mathrm{z}_{2}{ }^{\gamma}+2 \delta \mathrm{z}_{2}{ }^{\psi}\right)\right), \delta \mathrm{z}_{2}{ }^{\psi}(\bar{\gamma} \cdot \bar{p}-m)-m \delta \mathrm{z}_{1}^{m}, \delta \mathrm{z}_{2}{ }^{\gamma}\left(\bar{p}^{2} \bar{g}^{\alpha \beta}-\bar{p}^{\alpha} \bar{p}^{\beta}\right)\right\}
\end{array}
$$

Toy Model: Deriving Coupling vectors I

- As seen in earlier slides, FAHFeynmanRules operator generate the following output

photon-fermion coupling	$\frac{1}{2} d_{e} \gamma_{5}\left(\gamma^{\alpha} \not p-\not p \gamma^{\alpha}\right)+e \gamma^{\alpha}$
non-inverted fermion propagator	$\not p-m$
non-inverted photon propagator ${ }^{2}$	$p^{2} g^{\alpha \beta}-p^{\alpha} p^{\beta}$

- Using GetCouplingVector we can separate the coupling vector into a Lorentz part and kinematic part

$$
\left(\begin{array}{lll}
\gamma_{5} \gamma^{\alpha} \not p, & \gamma_{5} \not p \gamma^{\alpha}, & \gamma^{\alpha}
\end{array}\right)\left(\begin{array}{cc}
\frac{d_{I}}{2}, & \frac{1}{4} d_{l}\left(2 \delta \mathbf{z}_{1} d_{l}+\delta \mathbf{z}_{2}{ }^{\gamma}+2 \delta \mathbf{z}_{2}{ }^{\psi}\right) \tag{17}\\
-\frac{d_{I}}{2}, & -\frac{1}{4} d_{l}\left(2 \delta \mathbf{z}_{1} d_{l}+\delta \mathbf{z}_{2}{ }^{\gamma}+2 \delta \mathbf{z}_{2} \psi\right) \\
e, & \frac{1}{2} e\left(2 \delta \mathbf{z}_{1}{ }^{e}+\delta \mathbf{z}_{2}{ }^{\gamma}+2 \delta \mathbf{z}_{2}{ }^{\psi}\right)
\end{array}\right) .
$$

- δz_{1}^{i} and δz_{2}^{i} are the renormalization constants of the associated with input parameters and the field respectively.
- From there, we can derive observables which will be shown below.

[^1]
Electron-Muon scattering cross-section I

The diagrams shown in Figure (3) are used for this calculations.

Figure 3: Feynman diagrams for electron-muon scattering.

Electron-Muon scattering cross-section II

- Using some arbitrary values for d_{l}, we calculated the cross-section to the first order of constant d_{l}, shown in Figure (4).
- The differential cross sections are calculated using

$$
\begin{equation*}
\sigma \propto\left|M_{0}+M_{1}\right|^{2} \approx\left|M_{0}\right|^{2}+2 \operatorname{Re} M_{0} M_{1}^{*} \tag{18}
\end{equation*}
$$

where M_{0} is the amplitude associated with the tree level topology, M_{1} is the amplitude associated with the self-energy and triangle topologies.

- Higher order contributions in Figure (4) account only for the one-loop topologies.

Figure 4: Effects of higher order one-loop correction on cross-section (infrared and uv finite part only) with $e=\sqrt{4 \pi \alpha}$.

Example of a Hadronic Model

The package is most useful for hadronic models. As an example, we will look into the following Chiral Perturbation Theory(ChPT) ${ }^{1}$:

$$
\begin{align*}
& \mathcal{L}=\frac{1}{8 f_{\pi^{2}}} \operatorname{Tr}\left[-\frac{8}{3}\left(P^{2} \partial^{\mu} P+P \partial^{\mu} P P+\partial^{\mu} P P^{2}\right)\right. \\
&+4\left(P \partial^{\mu} P+\partial^{\mu} P P\right)\left(P \partial_{\mu} P+\partial_{\mu} P P\right) \tag{19}\\
&\left.-\frac{8}{3} \partial^{\mu} P\left(P^{2} \partial_{\mu} P+P \partial_{\mu} P P+\partial_{\mu} P P^{2}\right)\right]
\end{align*}
$$

where

$$
P=\left(\begin{array}{ccc}
\frac{\eta}{\sqrt{6}}+\frac{\pi_{0}}{\sqrt{2}} & \pi_{+} & K_{+} \tag{20}\\
\pi_{-} & \frac{\eta}{\sqrt{6}}-\frac{\pi_{0}}{\sqrt{2}} & K_{0} \\
K_{-} & \bar{K}_{0} & -\sqrt{\frac{2}{3}} \eta
\end{array}\right)
$$

$\operatorname{In}[2]:=P=\left\{\left\{\frac{1}{\sqrt{6}} *\right.\right.$ QuantumField $[\eta]+\frac{1}{\sqrt{2}}$ QuantumField [п0], QuantumField [Пр] , QuantumField [Kp]\},
$\left\{\right.$ QuantumField $[\Pi m], \frac{1}{\sqrt{6}} *$ QuantumField $[\eta]-\frac{1}{\sqrt{2}}$ QuantumField [$\Pi 0$],
QuantumField [K0] \}, $\left\{\right.$ QuantumField [Km], QuantumField [K0b], $\frac{-2}{\sqrt{6}}$ QuantumField[η] $\left.\}\right\}$
Out[2] $=\left(\begin{array}{ccc}\frac{\eta}{\sqrt{6}}+\frac{\Pi 0}{\sqrt{2}} & \Pi р & \mathrm{Kp} \\ \Pi \mathrm{m} & \frac{\eta}{\sqrt{6}}-\frac{\Pi 0}{\sqrt{2}} & \mathrm{~K} 0 \\ \mathrm{Km} & \text { K0b } & -\sqrt{\frac{2}{3}} \eta\end{array}\right)$
$\operatorname{In}[3]:=\mathrm{dP}=\mathbf{P} / /$. QuantumField[a_] $: \rightarrow$ QuantumField[FCPartialD $[\mu], a]$
$\operatorname{Out}[3]=\left(\begin{array}{ccc}\frac{\left(\partial_{\mu} \eta\right)}{\sqrt{6}}+\frac{\left(\partial_{\mu} \Pi 0\right)}{\sqrt{2}} & \left(\partial_{\mu} \Pi \mathrm{p}\right) & \left(\partial_{\mu} \mathrm{Kp}\right) \\ \left(\partial_{\mu} \Pi \mathrm{m}\right) & \frac{\left(\partial_{\mu} \eta\right)}{\sqrt{6}}-\frac{\left(\partial_{\mu} \Pi 0\right)}{\sqrt{2}} & \left(\partial_{\mu} \mathrm{K} 0\right) \\ \left(\partial_{\mu} \mathrm{Km}\right) & \left(\partial_{\mu} \mathrm{K} 0 \mathrm{~b}\right) & -\sqrt{\frac{2}{3}}\left(\left(\partial_{\mu} \eta\right)\right)\end{array}\right)$
$\ln [4]:=\operatorname{lag} P=$

$$
\begin{aligned}
& \frac{1}{8 f \pi^{2}} *\left(-\frac{8}{3}(P \cdot P \cdot d P+P \cdot d P \cdot P+d P \cdot P \cdot P) \cdot d P+4(P \cdot d P+d P \cdot P) \cdot(P \cdot d P+d P \cdot P)-\right. \\
& \left.\frac{8}{3} d P \cdot(P \cdot P \cdot d P+P \cdot d P \cdot P+d P \cdot P \cdot P)\right) / / F l a t t e n
\end{aligned}
$$

```
In[108]:= \Pi0\etaK0K0bCoupling[f1_, f2_, f3_, f4_] :=
```

 Total[
 FAHFeynmanRules[lagP, \{\{QuantumField[f1][k1], QuantumField[f2][k2], QuantumField[f3][k3], QuantumField[f4][k4]\}\}] // Flatten] // Expand;
$\operatorname{In}[81]:=$ couplingList $=\{\{\Pi 0, \eta, K 0, K 0 b\},\{\Pi р, \Pi m, \Pi р, ~ \Pi m\}\} ;$
In[125]:= Print[H0ךK0K0bCoupling /@ couplingList];

$$
\begin{aligned}
& \left\{-\frac{\overline{\mathrm{kl}} \cdot \overline{\mathrm{k} 2}}{\sqrt{3} \mathrm{f} \pi^{2}}+\frac{\overline{\mathrm{kl}} \cdot \overline{\mathrm{k} 3}}{2 \sqrt{3} \mathrm{f} \pi^{2}}+\frac{\overline{\mathrm{k} 1} \cdot \overline{\mathrm{k} 4}}{2 \sqrt{3} \mathrm{f} \pi^{2}}+\frac{\overline{\mathrm{k} 2} \cdot \overline{\mathrm{k} 3}}{2 \sqrt{3} \mathrm{f} \pi^{2}}+\frac{\overline{\mathrm{k} 2} \cdot \overline{\mathrm{k} 4}}{2 \sqrt{3} \mathrm{f} \pi^{2}}-\frac{\overline{\mathrm{k} 3} \cdot \overline{\mathrm{k} 4}}{\sqrt{3} \mathrm{f} \pi^{2}},\right. \\
& \left.\frac{2(\overline{\mathrm{kl}} \cdot \overline{\mathrm{k} 2})}{3 \mathrm{f} \pi^{2}}-\frac{4(\overline{\mathrm{k} 1} \cdot \overline{\mathrm{k} 3})}{3 \mathrm{f}^{2}}+\frac{2(\overline{\mathrm{k} 1} \cdot \overline{\mathrm{k} 4})}{3 \mathrm{f} \pi^{2}}+\frac{2(\overline{\mathrm{k} 2} \cdot \overline{\mathrm{k} 3})}{3 \mathrm{f} \pi^{2}}-\frac{4(\overline{\mathrm{k} 2} \cdot \overline{\mathrm{k} 4})}{3 \mathrm{f} \pi^{2}}+\frac{2(\overline{\mathrm{k} 3} \cdot \overline{\mathrm{k} 4})}{3 \mathrm{f} \pi^{2}}\right\}
\end{aligned}
$$

Future Plan: Main Goals

Design and write code for necessary Operators to perform

- Calculations of theories similar to Electroweak theory.
- Automate the process of spontaneous symmetry breaking ${ }^{5,9}$.

In order to do this we will use multiplicative renormalization scheme. ${ }^{4}$.

Operators of FeynArtsHelper

Operators	Description
GetCounterTermLagrangian	Gives us the counter-term lagrangian.
FAHReplace	Help us make the expression more readable.
FAHFeynmanRules	Gives us couplings and non-inverted propagator from a Lagrangian.
FAHCTFeynmanRules	Gives us couplings and non-inverted propagator from a counter-term Lagrangian.
GetCouplingVector	Help us extract couplings from a Lagrangian and counter-term Lagrangian.
WriteCV	Write coupling vector to FeynArts friendly text file.
GetPropagator	Invert the non-inverted propagators.
GenPropInternal	Replaces the output into a FeynArts friendly output.
WriteGenProp	Write Analytical Propagator to FeynArts friendly text file.
WriteGENOutput	Write Lorentz part coupling vector to FeynArts friendly text file.

Conclusion

- The package, FeynArtsHelper works for $U(1)$ and $S O(3)$ gauge groups and their extensions.
- The automation of the electroweak processes will be another milestone for the package, since we will be make sure that the package works for a well-established spontaneous symmetry breaking model.
- Once the code is written, we will be able to include this mechanism in our subsequent models to search for New Physics (NP).
- We will reproduce known results to show the package works.

> -
> worti-twhr
> HOW?WHEN?

> WHY?WHERE?
> WHEN? HOW?

> Whtrermon
> mintrytor

Bibliography I

[1] Aleksejevs, A. and Barkanova, S. (2019). Dynamic Structure of Hadrons in ChPT. PoS, LeptonPhoton2019:125.
[2] Hahn, T. (2000). Automatic loop calculations with feynarts, formcalc, and looptools. Nuclear Physics B - Proceedings Supplements, 89(1-3):231-236.
[3] Hann, T. (2001). Generating feynman diagrams and amplitudes with feynarts 3. Computer Physics Communications, 140(3):418-431.
[4] Hollick, W. F. (1988). Radiative corrections in the standard model and their role for precision tests of the electroweak theory. Deutsches Elektronen-Synchrotron (DESY), pages 16-31.
[5] Michael E. Peskin, D. V. S. (1995). An Introduction to Quantum Field Theory. Cambridge University Press.
[6] Patel, H. H. (2015). Package-x: A mathematica package for the analytic calculation of one-loop integrals. Computer Physics Communications, 197:276-290.

Bibliography II

[7] Reefat (2021). Documentation of the package: FeynArtsHelper. https://reefat96.github.io/FeynArtsHelper/.
[8] R.Mertig, M.Bohm, A. (1991). Feyn calc - computer-algebraic calculation of feynman amplitudes. Computer Physics Communications, 64(3):345-359.
[9] Weinberg, S. (1995). The Quantum Theory of Fields. Cambridge University Press.

[^0]: ${ }^{a}$ NP stands for New Physics

[^1]: ${ }^{2}$ without the gauge fixing terms

