Meson spectroscopy using holographic QCD plus 't Hooft equation

Mohammad Ahmady

Department of Physics
Mount Allison University

June 6, 2022

Overview

(1) Light-front wavefunction
(2) Longitudinal dynamics
(3) Predicting Meson spectrum

Light-front coordinates

Lorentz transformation mixes the components of the space-time 4-vector. $x^{\mu} \equiv\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$.

However, one can define combinations of the 4 -vector components which are the eigenstates of the Lorentz Transformation and so get scaled under Lorentz boost:

$$
\begin{gathered}
x^{+}=x^{0}+x^{3}, x^{-}=x^{0}-x^{3}, x^{\perp}=x^{1}, x^{2} \\
x^{2}=x^{\mu} x_{\mu}=x^{+} x^{-}-x^{\perp^{2}}
\end{gathered}
$$

$x^{+} \rightarrow$ Light-front time $x^{-} \rightarrow$ Light-front distance

For energy momentum 4-vector $p^{\mu} \equiv\left(p^{0}, p^{1}, p^{2}, p^{3}\right)$
Light-front energy $\rightarrow p^{-}=p^{0}-p^{3}$
Light-front momentum $\rightarrow p^{+}=p^{0}+p^{3}$

LFWF

$$
\begin{equation*}
H_{Q C D}^{\mathrm{LF}}|\Psi(P)\rangle=M^{2}|\Psi(P)\rangle \tag{1}
\end{equation*}
$$

where $H_{\mathrm{QCD}}^{\mathrm{LF}}=P^{+} P^{-}-P_{\perp}^{2}$ is the LF QCD Hamiltonian and M is the hadron mass. At equal light-front time $\left(x^{+}=0\right)$ and in the light-front gauge $A^{+}=0$, the hadron state $|\Psi(P)\rangle$ admits a Fock expansion, i.e.

$$
\left|\Psi\left(P^{+}, \mathbf{P}_{\perp}, S_{z}\right)\right\rangle=\sum_{n, h_{i}} \int\left[\mathrm{~d} x_{i}\right]\left[\mathrm{d}^{2} \mathbf{k}_{\perp i}\right] \frac{1}{\sqrt{x_{i}}} \Psi_{n}\left(x_{i}, \mathbf{k}_{\perp i}, h_{i}\right)\left|n: x_{i} P^{+}, x_{i} \mathbf{P}_{\perp}+\mathbf{k}_{\perp i}, h_{i}\right\rangle
$$

where $\Psi_{n}\left(x_{i}, \mathbf{k}_{\perp i}, h_{i}\right)$ is the LFWF of the Fock state with n constituents and the integration measures are given by

$$
\left[\mathrm{d} x_{i}\right] \equiv \prod_{i}^{n} \mathrm{~d} x_{i} \delta\left(1-\sum_{j=1}^{n} x_{j}\right) \quad\left[\mathrm{d}^{2} \mathbf{k}_{\perp i}\right] \equiv \prod_{i=1}^{n} \frac{\mathrm{~d}^{2} \mathbf{k}_{\perp i}}{2(2 \pi)^{3}} 16 \pi^{3} \delta^{2}\left(\sum_{j=1}^{n} \mathbf{k}_{\perp i}\right)
$$

$\left(k_{i}^{+}, k_{i}^{-}, \mathbf{k}_{\perp i}\right)$ and h_{i} are the momentum and helicity of the $i^{\text {th }}$ constituent and $x_{i}=k_{i}^{+} / P^{+}$.

The valence meson LFWF

For $n=2$,

$$
\begin{gathered}
\mathbf{k}_{\perp 1}=-\mathbf{k}_{\perp 2}=\mathbf{k}_{\perp} \\
x_{1}=1-x_{2}=x
\end{gathered}
$$

The position-space conjugate of \mathbf{k}_{\perp}, denoted by $\mathbf{b}_{\perp}=b_{\perp} e^{i \varphi}$, is the transverse separation between the quark and the antiquark.

Introduce a new light-front variable $\boldsymbol{\zeta}=\sqrt{x(1-x)} \mathbf{b}_{\perp}=\zeta e^{i \varphi}$ leads to the meson LFWF in the position-space:

$$
\Psi(\zeta, x, \phi) \xlongequal{\text { factorization }} \frac{\phi(\zeta)}{\sqrt{2 \pi \zeta}} e^{i L \phi} X(x)
$$

$\phi(\zeta)$ and $X(x)$ are referred to as the transverse and longitudinal modes.

Holographic Schrödinger equation

Brodsky, de T'eramond (PRL, 09)
Brodsky, de T'eramond, Dosch, Erlich (Phys. Rep. 15)
In the semi-classical limit, i.e. zero quark mass and no quantum loop, based on AdS/CFT, one can show that the transverse mode of LFWF of the valence ($n=2$ for mesons) state can be obtained from a 1-dimensional Schrödinger-like wave equation for the:

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+U_{\perp}(\zeta)\right) \phi(\zeta)=M_{\perp}^{2} \phi(\zeta)
$$

the potential is uniquely determined from the conformal symmetry breaking mechanism and correspondence with weakly coupled string modes in AdS_{5} space, which results in a light-front harmonic oscillator potential in physical spacetime with confinement scale κ :

$$
U_{\perp}(\zeta, J)=\kappa^{4} \zeta^{2}+\kappa^{2}(J-1)
$$

$J=L+S$ is the total meson angular momemtum.

Solutions to holographic Schrödinger equation

With the confining potential specified, one can solve the holographic Schrödinger equation to obtain the meson mass spectrum,

$$
M_{\perp}^{2}=4 \kappa^{2}\left(n_{\perp}+L+\frac{S}{2}\right)
$$

which, as expected, predicts a massless pion. The corresponding normalized eigenfunctions are given by

$$
\phi_{n L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} \exp \left(\frac{-\kappa^{2} \zeta^{2}}{2}\right) L_{n}^{L}\left(x^{2} \zeta^{2}\right)
$$

To completely specify the holographic meson wavefunction, we need the analytic form of the longitudinal mode $\mathcal{X}(x)$. This is obtained by matching the expressions for the pion EM or gravitational form factor in physical spacetime and in AdS space. Either matching consistently results in $X(x)=\sqrt{x(1-x)}$

Meson holographic LFWF

The meson holographic LFWFs for massless quarks can thus be written in closed form:

$$
\Psi_{n L}(\zeta, x, \phi)=e^{i L \phi} \sqrt{x(1-x)}(2 \pi)^{-1 / 2} \kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{L} \exp \left(\frac{-\kappa^{2} \zeta^{2}}{2}\right) L_{n}^{L}\left(x^{2} \zeta^{2}\right)
$$

For non-zero quark mass, Brodsky and de Teramond prescription is to shift the longitudinal mode:

$$
X(x)=\sqrt{x(1-x)} \longrightarrow X_{\mathrm{BdT}}(x)=\sqrt{x(1-x)} \exp \left(-\frac{(1-x) m_{q}^{2}+x m_{\bar{q}}^{2}}{2 \kappa^{2} x(1-x)}\right)
$$

Example: pion LFWF $\left(m_{q}=m_{\bar{q}}\right)$

$$
\Psi^{\pi}\left(x, \zeta^{2}\right)=\mathcal{N} \sqrt{x(1-x)} \exp \left[-\frac{\kappa^{2} \zeta^{2}}{2}\right] \exp \left[-\frac{m_{q}^{2}}{2 \kappa^{2} x(1-x)}\right]
$$

Meson spectrum

The shift in meson mass when moving away from chiral limit:

$$
\begin{aligned}
\Delta M_{\mathrm{BdT}}^{2} & =\int \frac{\mathrm{d} x}{x(1-x)} \\
& \times X_{\mathrm{BdT}}^{2}(x)\left(\frac{m_{q}^{2}}{x}+\frac{m_{\bar{q}}^{2}}{1-x}\right) \\
& M^{2}=M_{\perp}^{2}+\Delta M_{\mathrm{BdT}}^{2}
\end{aligned}
$$

For pion $M_{\perp}=0$ and the above prescription leads to $M_{\pi}^{2}=\Delta M_{\mathrm{BdT}}^{2} \propto m_{q}^{2}$ which is not in agreement with Gell-Mann-Oakes-Renner (GMOR) relation $M_{\pi}^{2} \propto m_{q}$.
Another problem with this prescription is that it is the same for ground state and excited states mesons.

The 't Hooft Equation

G. 't Hooft, A Two-Dimensional Model for Mesons, Nucl. Phys. B 75 (1974) 461-470

In an earlier approach, 't Hooft derived a Schrödinger-like equation for the longitudinal mode, starting from the QCD Lagrangian in (1+1)-dim in the $N_{c} \gg 1$ approximation. This Lagrangian now contains two mass scales:
the quark mass and the gauge coupling. The resulting 't Hooft Equation is:

$$
\begin{aligned}
& \left(\frac{m_{q}^{2}}{x}+\frac{m_{\bar{q}}^{2}}{1-x}\right) \chi(x) \\
& \quad+U_{L}(x) \chi(x)=M_{L}^{2} \chi(x)
\end{aligned}
$$

with

$$
\begin{equation*}
U_{L}(x) \chi(x)=\frac{g^{2}}{\pi} \mathcal{P} \int \mathrm{~d} y \frac{\chi(x)-\chi(y)}{(x-y)^{2}} \tag{2}
\end{equation*}
$$

The longitudinal mode $\longrightarrow X(x)=\sqrt{x(1-x)} \chi(x)$

Numerical solutions

Expand the longitudinal mode onto a Jacobi polynomial basis:

$$
\begin{equation*}
\chi(x)=\sum_{n} c_{n} f_{n}(x) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{n}(x)=N_{n} x^{\beta_{1}}(1-x)^{\beta_{2}} P_{n}^{\left(2 \beta_{2}, 2 \beta_{1}\right)}(2 x-1) \tag{4}
\end{equation*}
$$

where $P_{n}^{\left(2 \beta_{2}, 2 \beta_{1}\right)}$ are the Jacobi polynomials and

$$
\begin{align*}
N_{n}= & \sqrt{\left(2 n+\tilde{\beta}_{1}+\tilde{\beta}_{2}\right)} \\
& \times \sqrt{\frac{n!\Gamma\left(n+\tilde{\beta}_{1}+\tilde{\beta}_{2}\right)}{\Gamma\left(n+\tilde{\beta}_{1}+1\right) \Gamma\left(n+\tilde{\beta}_{2}\right)}} \tag{5}
\end{align*}
$$

Solve the eigenvalue problem for eigenvalues M_{L}^{2} and eigenvectors $\left\{c_{n}\right\}$.

Predicting Meson spectrum-input parameters

$M^{2}\left(n_{L}, n_{T}, J, L\right)=M_{T}^{2}\left(n_{T}, J, L\right)+M_{L}^{2}\left(n_{L}\right)$			
Mesons	Light	Heavy-light	Heavy-heavy
g	0.128	0.680	0.523
$m_{u / d}$	0.046	0.046	-
m_{s}	0.357	0.357	-
m_{c}	-	1.370	1.370
m_{b}	-	4.640	4.640

Table: The quark masses and 't Hooft couplings in GeV . Note that we use $\kappa=0.523 \mathrm{GeV}$ for all mesons.

Parity and charge conjugation quantum numbers for the meson to be $P=(-1)^{L+1}$ and $C=(-1)^{L+S+n_{L}}$ respectively.
Finding: $n_{L} \geq n_{T}+L$, i.e. in any hadron, an orbital and radial excitations in the transverse dynamics is always accompanied by an excitation in the longitudinal dynamics.

Predicting Meson spectrum: light-light

Figure: Our predictions for the Regge trajectories of light mesons. Data from the Particle Data Group.

Predicting Meson spectrum: Heavy-light

Figure: Our predictions for the Regge trajectories of heavy-light mesons. Data from the Particle Data Group.

Predicting Meson spectrum: Heavy-heavy

Figure: Our predictions for the Regge trajectories of heavy-heavy mesons. Data from the Particle Data Group.

Conclusion

- The meson spectrum can be very well described by using the holographic Schrödinger Equation in conjunction with the 't Hooft Equation.
- This is achieve with keeping the transverse confinement scale universal across the full spectrum.
- For heavy-heavy mesons, The transverse coincides with the longitudinal confinement scale ('t Hooft coupling), as expected from the restoration of manifest 3-dimensional rotational symmetry in the nonrelativistic limit.

