Causality constraints on modifications to gravity

Simon Caron-Huot
McGill University

CAP annual meeting, June 82022

Einstein's General Relativity works well

Suppose it didn't.

Size of corrections \Leftrightarrow
Mass $M_{\text {higher-spin }}$ of new states

Treat gravity as an EFT below Mhigher-spin (<< Mpl)

$S=\frac{1}{16 \pi G} \int R+g_{3}$ Riem $^{3}+g_{4}$ Riem $^{4}+\ldots+$ matter

How large can g 's be ?

\Rightarrow causality of graviton scattering will require:

$$
\left|g_{3}\right| \leq \frac{\#}{M_{\text {higher-spin }}^{4}}, \quad 0<g_{4} \leq \frac{\#^{\prime}}{M_{\text {higher-spin }}^{6}}, \quad \ldots
$$

Outline

1. The question: What modifications can we bound?

- Graviton scattering
- causality+unitarity

2. The method

- dispersive sum rules
- scalar effective theories

3. Results

- would colliders see it?

Low energy graviton scattering in 3+1D

$\begin{aligned} & \begin{array}{c}\text { Mhigher-spin } \ll \mathrm{Mpl}_{\mathrm{pl}} \\ \text { neglect loops. }\end{array}\end{aligned} \mathscr{M}^{+--+}=[14]^{4}\langle 23\rangle^{4} \times 8 \pi G\left[\frac{1}{s t u}+\frac{\left|g_{3}\right|^{2} s u}{4 t}+\frac{\left|g_{s}\right|^{2}}{-t}+g_{4}+g_{5} t+\ldots\right]$

We don't bound:

- $f(R) \quad(\simeq$ Einstein + scalar field : no imprint in graviton scattering)
- Any term with Ricci tensor/scalar: removable by field redefinition (no imprint)
- Scalar potentials (don't grow with energy)
- 'Fifth forces', torsion, etc: treat as extra matter fields (minimally coupled or not)

Briefly, we bound amplitudes, not Lagrangians.

Causality

"signals can't travel faster than light"

- Why waves, fields

Causality

"signals can't travel faster than light"

- Why waves, fields
- Why particles

Causality

"signals can't travel faster than light"

- Why waves, fields
- Why particles
- Why antiparticles

Causality

"signals can't travel faster than light"

- Why waves, fields
- Why particles
- Why antiparticles

- Experimentally tested to exquisite accuracy

Causality vs. gravity: some known results

0) at long distances, any Lorentz-invariant S-matrix of a massless spin-2 particle must reproduce GR
1) positivity of classical time delays at impact parameters $b_{\min } \gg 1 / M_{\text {higher-spin }}$ requires

$$
\left|g_{3}\right| \lesssim \frac{1}{M_{\text {higher-spin }}^{4}}
$$

[Camanho,Edelstein,Maldacena\& Zhiboedov '14]
2) positivity of forward amplitudes (imaginary parts) implies various sign constraints

$$
g_{4}=\int_{M_{\text {heary }}^{2}}^{\infty} \frac{d s}{s} \operatorname{Im} f(s, t=0) \geq 0
$$

Method

Dispersion relations

Causality for 2->2 scattering

i) Fixed angle scattering can show time advances [Giddings+Porto '09]
\Rightarrow causality controls Regge limit $\begin{aligned} & s \rightarrow \infty \\ & t \text { or } b \text { fixed }\end{aligned}$

Causality for 2->2 scattering

i) Fixed angle scattering can show time advances [Giddings+Porto '09]
\Rightarrow causality controls Regge limit $\begin{aligned} & s \rightarrow \infty \\ & t \text { or } b \text { fixed }\end{aligned}$
ii) Strongest statement involves crossing:

$$
\text { particle } 1 \rightarrow 3 \simeq \text { antiparticle } 3 \rightarrow 1
$$

Particles are waves. What is causality for waves?

Wavefront not superluminal
Medium response is analytic in frequency
\& sub-exponential in
upper half-plane

Kramers-Kronig dispersion relations:

low-energy
scattering
\Leftrightarrow production of heavy particles

Minimal axioms:

$\mathrm{M}_{\text {low }}(\mathrm{s}, \mathrm{t})$ has a causal+unitary (relativistic) UV completion

Dispersive sum rules: relate IR\& UV

$$
\begin{aligned}
0=\oint_{|s|=\infty} d s \frac{M_{\psi}(s)}{s^{k+1}} \Rightarrow \quad \oint_{\text {EFT }}(\cdots)=\int_{\text {heavy }} \frac{d s}{s^{k+1}} \operatorname{Im} M_{\psi}(s) & (k>1) \\
& \sum_{J}\left|c_{J}\right|^{2} P_{J}\left(1-2 p^{2} / s\right)_{\psi} \\
& \begin{array}{l}
\text { (Im M }=\text { sum of Legendre's } \\
\text { with positive coefficients) }
\end{array}
\end{aligned}
$$

(low-energy couplings) $=$ (sums of high-energy unknowns)

Minimal axioms:

i) Analyticity of $\mathrm{M}(\mathrm{s}, \mathrm{t})$ in $\left\{t \in\left(-M^{2}, 0\right)\right\} \times\left\{\begin{array}{l}\text { real } s>M^{2} \cup \text { real } u>M^{2} \\ \text { Uupper-half-plane connecting them }\end{array}\right\}$
ii) Boundedness $\left|M_{\psi}(s) / s\right| \leq \mathrm{const}$ as $|s| \rightarrow \infty$

$$
\text { for smeared amplitude: } M_{\psi}(s)=\int_{0}^{M} \psi(p) M\left(s,-p^{2}\right) \quad \begin{aligned}
& \psi \cdot \text { compact support } p<M, \\
& \text { fast decay in } b
\end{aligned}
$$

Warm-up: non-gravitational real scalar

- weakly coupled EFT below M
- anything above M, just causal and unitary

$$
\begin{aligned}
\mathcal{L}_{\text {low }}= & -\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{g}{3!} \phi^{3}-\frac{\lambda}{4!} \phi^{4} \\
& +\frac{g_{2}}{2}\left[\left(\partial_{\mu} \phi\right)^{2}\right]^{2}+\frac{g_{3}}{3}\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}\left(\partial_{\sigma} \phi\right)^{2}+4 g_{4}\left[\left(\partial_{\mu} \partial_{\nu} \phi\right)^{2}\right]^{2}+\cdots \\
& \uparrow \\
\mathcal{M}_{\text {low }}(s, t)= & -g^{2}\left[\frac{1}{s}+\frac{1}{t}+\frac{1}{u}\right]-\lambda \\
& +g_{2}\left(s^{2}+t^{2}+u^{2}\right)+g_{3}(s t u)+g_{4}\left(s^{2}+t^{2}+u^{2}\right)^{2}+g_{5}\left(s^{2}+t^{2}+u^{2}\right)(s t u)+\ldots
\end{aligned}
$$

Goal: bound higher-derivative terms

First few sum rules: $(\mathrm{k}=2,4, \ldots)$

$$
\begin{array}{ll}
B_{2}: 2 g_{2}-g_{3} t+8 g_{4} t^{2}+\ldots & =\left\langle\frac{\left(2 m^{2}+t\right) \mathcal{P}_{J}\left(1+\frac{2 t}{m^{2}}\right)}{m^{2}\left(m^{2}+t\right)^{2}}\right\rangle_{m \geq M} \\
B_{4}: 4 g_{4}+\ldots & =\left\langle\frac{\left(2 m^{2}+t\right) \mathcal{P}_{J}\left(1+\frac{2 t}{m^{2}}\right)}{m^{4}\left(m^{2}+t\right)^{3}}\right\rangle_{m \geq M}
\end{array}
$$

Expand around $\mathrm{t}=0$ (requires stronger axioms)

clearly: $g_{2} \geq 0$

$$
\begin{aligned}
g_{3}=\left\langle\begin{array}{ll}
\left\langle\frac{3-\frac{4}{d-2} \mathcal{J}^{2}}{m^{6}}\right\rangle & g_{4}=\left\langle\frac{1}{2 m^{8}}\right\rangle \\
& ? \leq g_{3} \leq \frac{3 g_{2}}{M^{2}}
\end{array}\right. & 0 \leq g_{4} \leq \frac{g_{2}}{2 M^{4}}
\end{aligned}
$$

$$
\begin{gathered}
0=\left\langle\frac{\mathcal{J}^{2}\left(2 \mathcal{J}^{2}-5 d+4\right)}{m^{8}}\right\rangle \\
\text { 'null constraints' from } \\
\text { crossing symmetry } \\
\text { enable 2-sided bounds }
\end{gathered}
$$

'dimensional analysis scaling' is a theorem [for operators of dim ≥ 8]

$\tilde{g}_{k} \equiv g_{k} M^{\#} / g_{2}$

EFT coefficient	Lower bound	Upper bound
\tilde{g}_{3}	-10.346	3
\tilde{g}_{4}	0	0.5
\tilde{g}_{5}	-4.096	2.5
\tilde{g}_{6}	0	0.25
\tilde{g}_{6}^{\prime}	-12.83	3
\tilde{g}_{7}	-1.548	1.75
\tilde{g}_{8}	0	0.125
\tilde{g}_{8}^{\prime}	-10.03	4
\tilde{g}_{9}	-0.524	1.125
\tilde{g}_{9}^{\prime}	-13.60	3
\tilde{g}_{10}	0	0.0625
\tilde{g}_{10}^{\prime}	-6.32	3.75

geometric growth like $\frac{1}{M^{2}-s} \sim \frac{1}{M^{2}}+\frac{s}{M^{4}}+$
[Tolley, Wang\& Zhou '20] [SCH\& van Duong '20]
[Arkani-Hamed, Huang\& Huang '20]
[Chiang, Huang, Li, Rodina\& Weng '21]

Gravity: new results

" Spin is GREAT »

- Dispersive sum rules for gravitons:

$$
\left.M^{+--+}=\begin{array}{c}
\alpha t^{4} \\
{[14]^{4}\langle 23\rangle^{4} \times 8 \pi G}
\end{array} \frac{1}{s t u}+\frac{\left|g_{3}\right|^{2} s u}{4 t}+\frac{\left|g_{s}\right|^{2}}{-t}+g_{4}+g_{5} t+\ldots\right]
$$

- Prefactor grants superconvergent sum rules:

$$
B_{2}(u): 0=\oint_{s=\infty}(s-t) d s[f(s, t)+f(t, s)], \quad B_{3}(u): 0=\oint_{s=\infty} d s[f(s, t)-f(t, s)]
$$

- Any MAGIC combination which writes $G=$ positive sum will dominate all else:

$$
G=\sum_{k} \int_{0}^{-M^{2}} d u \Psi_{k}(u) B_{k}(u)>0 \quad \Rightarrow G-\# g_{3} \geq 0, \text { etc }
$$

- Require positive contributions from:
-light particles of spin<=2 (SM, KK modes, etc) -heavy states with $M>M$ nigher-spin of arbitrary spin

Riem ${ }^{3}$ and Riem ${ }^{4}$ can't exceed GR

$$
S=\frac{1}{16 \pi G} \int\left(R+\frac{\tilde{g}_{3} \mathrm{Riem}^{3}}{M_{\text {higher-spin }}^{4}}+\frac{\tilde{g}_{4} \mathrm{Riem}^{4}}{M_{\text {higher-spin }}^{6}}+\ldots\right)
$$

\tilde{g}^{\prime} s can't exceed O(1) without violating causality at scale $\sim M$ higher-spin

A tale of 3 effective field theorists:

$$
L \supset m_{\mathrm{pl}}^{2} R+c \frac{\mathrm{Riem}^{3}}{M^{2}}
$$

" $\mathrm{c}<\mathrm{O}(1)$ since couplings at cutoff should be $\mathrm{O}(1)^{\prime \prime}$

$$
L \supset m_{\mathrm{pl}}^{2}\left(R+c^{\prime} \frac{\mathrm{Riem}^{3}}{M^{4}}\right)
$$

" $c^{\prime}<\mathrm{O}(1)$: corrections can never dominate GR below the cutoff"

$$
\sim h \partial^{2} h+c^{\prime \prime} \frac{\partial^{6} h^{3}}{M^{5}}
$$

$$
L \supset m_{\mathrm{pl}}^{2} R+c^{\prime \prime} m_{\mathrm{pl}}^{3} \frac{\mathrm{Riem}^{3}}{M^{5}}
$$

"c"<O(1) so gravitons stay weakly coupled below $\mathrm{M}^{\prime \prime}$

When $M \ll m_{p l}$, what is the correct scaling of higher-derivative corrections with $M \& m_{p l}$?
A tale of 3 effective field theorists:
too restrictive
(untrue in string theory...)

$$
L \supset m_{\mathrm{pl}}^{2}\left(R+c^{\prime} \frac{\mathrm{Riem}^{3}}{M^{4}}\right)
$$

" $\mathrm{C}^{\prime}<\mathrm{O}(1)$: corrections can never dominate GR below the cutoff"

= what we find!

$\sim h \partial^{2} h+c^{\prime \prime} \frac{\partial^{6} h^{3}}{M^{5}}$
"c"<O(1) so gravitons stay
wearly coupled below M"
too permissive
(ruled out by our causality bounds!)

When $M \ll m_{\rho l}$, what is the correct scaling of higher-derivative corrections with M \& $m_{\rho l}$?

Our results are insensitive to the large-scale curvature of spacetime: one only needs a flat local patch of size >> 1/Mhigher-spin

In AdS spacetime, localized scattering -> rigorous bounds on CFT central charges:

$$
\mathrm{AdS}_{5} / \mathrm{CFT}_{4}: \quad\left|\frac{a-c}{c}\right| \leq \frac{23.0}{\Delta_{\text {gap }}^{2}}
$$

[SCH, Mazac, Rastelli\& Simmons-Duffin '21]
[SCH, Li, Parra Martinez\& Simmons-Duffin '22]

Summary

- Gravitational scattering below Mhigher-spin can't significantly differ from GR without violating causality.

Open questions

- Interactions between [higher-spin states] and Standard Model matter?
- Expect loops only $O\left(N / M_{\mathrm{pl}}^{4}\right)$. Check?
- Remove Log[IR]'s (dressing, ...)?
- Higher spacetime dimensions? massive graviton(s)?
- What if $\mathrm{M} \sim \mathrm{M}_{\mathrm{pl}}$: how close to classical GR can 4 d quantum gravity be?

What do we know about Mnigher-spin?

- Very conservatively: hard to imagine not seeing 'missing energy' at LHC from a gravitationally-coupled spin-4 particle with $\mathrm{M}<\mathrm{MeV}$.
- Corresponds to a length scale: $M_{\text {higher-spin }}^{-1}<10^{-13} \mathrm{~m}$...
- Phenomenological constraints should be analyzed carefully.

Comments on photon scattering:
$\stackrel{\mathrm{F} \wedge 4}{g_{2} \sim} \sum_{\text {charged fields }} \frac{e_{i}^{4}}{m_{i}^{4}}+\sum_{\text {axions }} \frac{1}{f_{a}^{2} m_{a}^{2}}$
$\stackrel{\mathrm{RF} \wedge 2}{\beta} \sim \sum_{\text {charged fields }} \frac{e_{i}^{2}}{m_{i}^{2}}$
-WCG upper bound on β / g_{2} not seen in dispersion relation [Hon bounds: ${ }^{\text {Mad, Russo, Vichi '22] }}$

- true bounds at large g2 are much stronger (axions don't contribute to β)
- small negative g2 allowed: time delay from graviton swamps possible $\sim e^{2}$ possible advance from matter loop.
more on contact interactions using (more) spin>=4 null constraints: (two $\left.D^{4} R^{4}\right) / R^{4}$

extremal slopes are only realized in region that disappears asymptorn idoymopoulous, Zhiboedov '21]
null constraints from IR crossing:

this constrains UV spectral density! (light-light-heavy couplings)

$$
\left\langle\frac{1}{m^{4}} \frac{\sim b^{2}}{m^{2}}\right\rangle_{\mathrm{m} \geq \mathrm{M}} \leq \frac{\#}{m^{2}}\left\langle\frac{1}{m^{4}}\right\rangle_{\mathrm{m} \geq \mathrm{M}}
$$

[Tolley, Wang\& Zhou '20] [SCH\& van Duong '20]
\Rightarrow As far as sum rules are concerned, heavy states with large spin (large b) can't couple strongly
(ie. large black holes, long strings, etc, can never dominate sum rules)

