

Contribution ID: 3057

Canadian Association of Physicists

Association canadienne des physiciens et physiciens

Type: Oral (Non-Student) / Orale (non-étudiant(e))

Thermal Conductivity of Square Ice

Wednesday, 8 June 2022 13:45 (15 minutes)

We investigate thermal transport in square ice, a two-dimensional analogue of spin ice, exploring the role played by emergent magnetic monopoles in transporting energy. Using kinetic Monte Carlo simulations based on energy preserving extensions of single-spin-flip dynamics, we explicitly compute the (longitudinal) thermal conductivity, κ , over a broad range of temperatures. We use two methods to determine κ : a measurement of the energy current between thermal baths at the boundaries, and the Green-Kubo formula, yielding quantitatively consistent values for the thermal conductivity. We interpret these results in terms of transport of energy by diffusion of magnetic monopoles. We relate the thermal diffusivity, κ/C where C is the heat capacity, to the diffusion constant of an isolated monopole, showing that the subdiffusive monopole implies κ/C vanishes at zero temperature. Finally, we discuss the implications of these results for thermal transport in three-dimensional spin ice, in spin ice materials such as $Dy_2Ti_2O_7$ and $Ho_2Ti_2O_7$, and outline some open questions for thermal transport in highly frustrated magnets.

Primary author: RAU, Jeffrey

Co-author: Mr SUTCLIFFE, Ruairidh (University of Windsor)

Presenter: RAU, Jeffrey

Session Classification: W2-8 Condensed matter theory II (DCMMP/DTP) | Théorie de la matière condensée II (DPMCM/DPT)

Track Classification: Technical Sessions / Sessions techniques: Condensed Matter and Materials Physics / Physique de la matière condensée et matériaux (DCMMP-DPMCM)