

Contribution ID: **3211** Type: **Oral Competition (Graduate Student)** / **Compétition orale (Étudiant(e) du 2e ou 3e cycle)**

(G*) Inverse Laplace transform of NMR spin-lattice relaxation data

Wednesday 8 June 2022 10:45 (15 minutes)

Traditional NMR data analysis techniques, such as the stretched exponential fit, are used to determine the sample-averaged nuclear spin-lattice relaxation rate $1/T_1$. However, they face difficulty when dealing with heterogeneous materials with NMR signals coming from distinct local environments, especially those with large, overlapping distributions of their Knight shifts and $1/T_1$.

To overcome this, we perform inverse Laplace transform (ILT) to obtain the histogram $P(1/T_1)$ of the $1/T_1$ distribution from the nuclear spin recovery curve M(t). We apply this technique to ⁶³Cu and ⁷⁹Br NQR data of kagome lattice materials herbertsmithite (ZnCu₃(OD)₆Cl₂) and Zn-barlowite (ZnCu₃(OD)₆FBr) as well as ¹⁹F NMR data of the latter.

From the 63 Cu data, we were able to use ILT to observe the gradual emergence of spin singlets with spatially varying excitation gaps below \sim 30[°]K in both materials. We also performed ILT across the 19 F NMR spectrum to obtain 3-dimensional ILT-resolved NMR lineshapes, which allowed us to separate the signals coming from two distinct, overlapping sites.

[1] J. Wang et al., Nat. Phys. 17, 1109–1113 (2021)

[2] J. Wang, W Yuan et al., Phys. Rev. Lett. (in press)

Primary author: WANG, Jiaming

Co-authors: YUAN, Weishi; IMAI, Takashi (McMaster University)

Presenter: WANG, Jiaming

Session Classification: W1-9 Quantum Magnetism (DCMMP) | Magnétisme quantique (DPMCM)

Track Classification: Technical Sessions / Sessions techniques: Condensed Matter and Materials Physics / Physique de la matière condensée et matériaux (DCMMP-DPMCM)