

AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider

https://arxiv.org/abs/2205.09185

Cristiano Fanelli ^{1,2}, Zisis Papandreou ³, Karthik Suresh ³

¹ Massachusetts Institute of Technology,

² The Institute for Artificial Intelligence and Fundamental Interactions, ³ University of Regina

CAP CONGRESS / CONGRÈS DE L'ACP

JUNE 5-10 JUIN MCMASTER UNIVERSITY | HAMILTON, ON www.cap.ca/congress/2022 | www.cap.ca/congres/2022

Outline

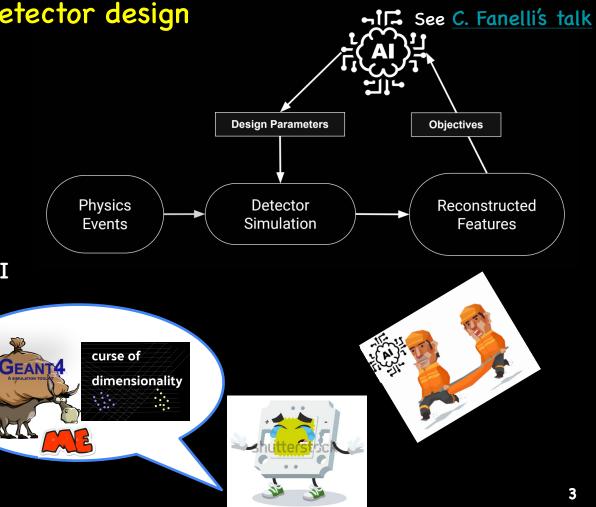
- □ This talk leverages on many concepts discussed in the previous talk by <u>C</u>. <u>Fanelli.</u>
- □ Key concepts

Why AI in detector design

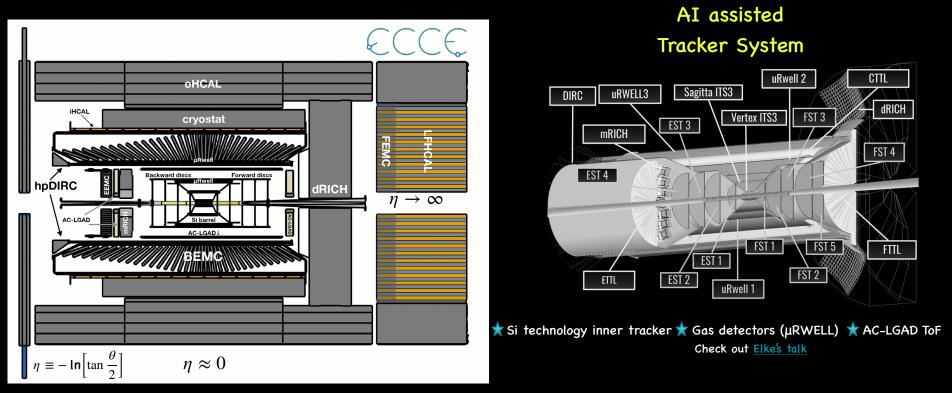
Walk through of developed Modular framework

Results

□ See arXiv: <u>2205.09185</u>:


Design parameters
Objectives
Constraints
Extension

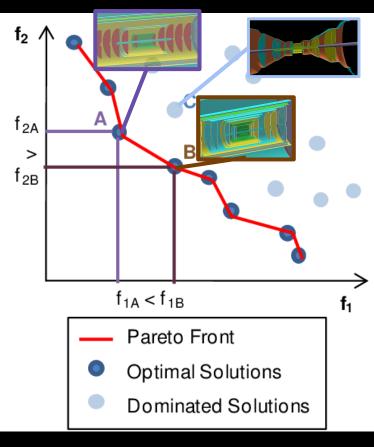
Optimization of EIC detector design


GEANT4 simulations are typically compute-intensive.

In order to explore a multidimensional parameter space in a multi-objective space, AI can assist our design in a more efficient way.

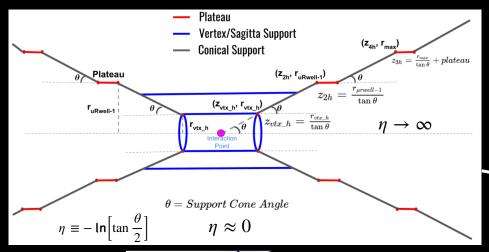
AI assist in designing. NOT "just" fine tuning.

The Reference Detector: the Tracking System


□ The tracking system reconstructs charged particle tracks. It combines different technologies.

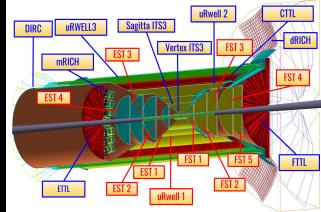
- Goal : Optimal combination of choice of tech & optimal geometric parameters.
- Optimization Phases of optimization

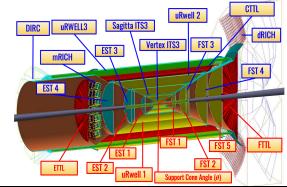
- Multiple "objectives", e.g., weighted avg momentum resolution, θ
 resolution, KF efficiency, projected θ resolution at PID location.
 Objectives could be conflicting. (This can be extended to other objectives, e.g., physics)
- Pareto-optimal solutions. Locus of points in Objective Space which are non-dominating to one another. <u>Check out Cristiano</u> <u>Fanelli's talk.</u>
- Developed a pipeline for optimization with MOGA/MOBO to optimize and "Fun4All" (GEANT4 based framework) to simulate and analyze the detector response. The approach is agnostic to the simulation framework.


$$min \mathbf{f_m}(\mathbf{x}) \qquad m = 1, \cdots, M$$

s.t. $\mathbf{g_j}(\mathbf{x}) \le 0, \qquad j = 1, \cdots, J$
 $\mathbf{h_k}(\mathbf{x}) = 0, \qquad k = 1, \cdots, K$
 $x_i^L \le x_i \le x_i^U, \qquad i = 1, \cdots, N$

Parametrization is an essential part of the optimization:


- explores different designs
- avoids overlaps of volumes
- encodes constraints



Implementation of support structures with realistic material budgets

Reference design

Ongoing R&D projective

Variable pars; Fixed pars

● Design Parameters (n_pars ≥ 9)

 \bigcirc Based on an parameterization.

• Constraints being used (n_const \geq 3)

 \odot STRONG The minimum distance between any 2 disks should be >= 10 cm

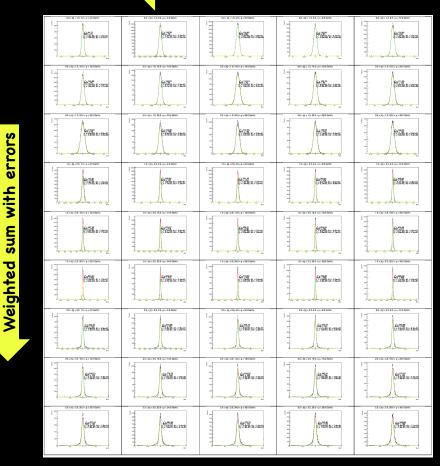
(giving room for services)

- \odot SOFT The Rmax-Rmin for the disks have to be multiple of 3.00 cms and
 - 1.8 cms (Tiling of pixels)

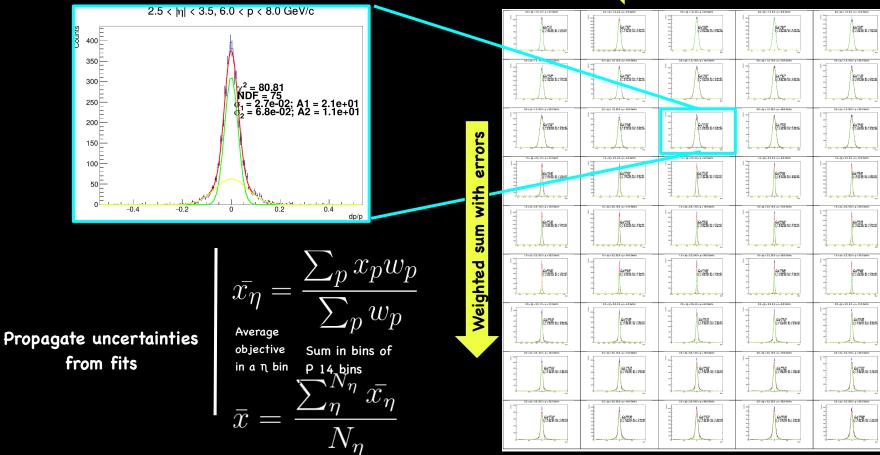
• Overlaps checked

- \bigcirc GEANT4 unstable when overlaps are detected in volumes.
- \bigcirc Overlaps are checked for every design explored and penalized.

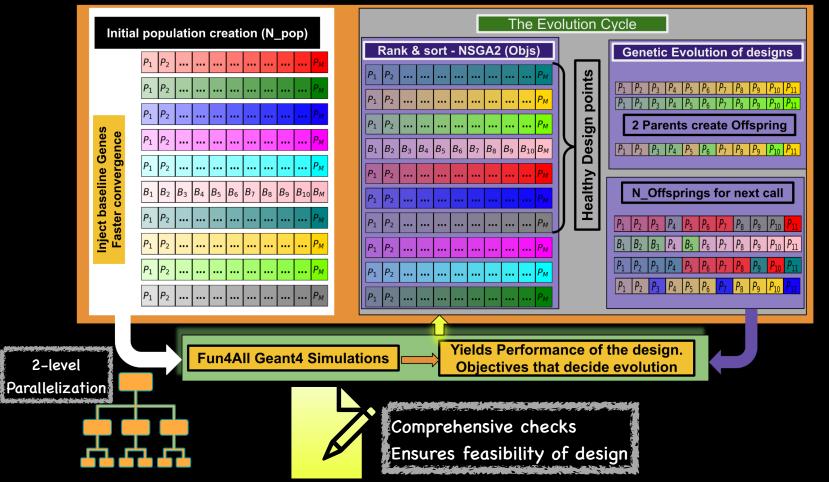
sub-detector	constraint	description
EST/FST disks	$min\left\{\sum_{i}^{disks} \left \frac{R_{out}^{i} - R_{in}^{i}}{d} - \left\lfloor \frac{R_{out}^{i} - R_{in}^{i}}{d} \right\rfloor \right\ \right\}$	soft constraint : sum of residuals in sensor coverage for disks; sensor dimensions: <i>d</i> = 17.8 (30.0) mm
EST/FST disks	$z_{n+1} - z_n >= 10.0 \text{ cm}$	strong constraint: minimum distance between 2 consecutive disks
sagitta layers	$\min\left\{\left \frac{2\pi r_{sagitta}}{w} - \left\lfloor\frac{2\pi r_{sagitta}}{w}\right\rfloor\right\}$	soft constraint : residual in sensor coverage for every layer; sensor strip width: <i>w</i> = 17.8 mm
μRWELL	$r_{n+1}-r_n >= 5.0 \text{ cm}$	strong constraint: minimum distance between μRwell barrel layers

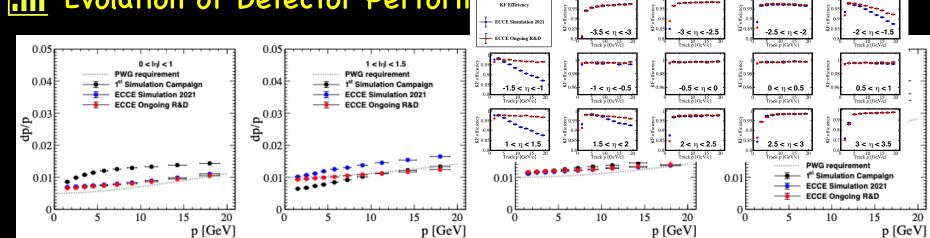

ECCE design (non-projective)			
Design Parameter	Range		
μ RWELL 1 (Inner) (r) Radius	[17.0, 51.0 cm]		
μ RWELL 2 (Inner) (r) Radius	[18.0, 51.0 cm]		
EST 4 z position	[-110.0, -50.0 cm]		
EST 3 z position	[-110.0, -40.0 cm]		
EST 2 z position	[-80.0, -30.0 cm]		
EST 1 z position	[-50.0, -20.0 cm]		
FST 1 z position	[20.0, 50.0 cm]		
FST 2 z position	[30.0, 80.0 cm]		
FST 3 z position	[40.0, 110.0 cm]		
FST 4 z position	[50.0, 125.0 cm]		
FST 5 z position	[60.0, 125.0 cm]		
ECCE ongoing R&D (projective)			
Design Parameter	Range		
Angle (Support Cone)	[25.0°, 30.0°]		
µRWELL 1 (Inner) Radius	[25.0, 45.0 cm]		
ETTL z position	[-171.0, -161.0 cm]		
EST 2 z position	[45, 100 cm]		
EST 1 z position	[35, 50 cm]		
FST 1 z position	[35, 50 cm]		
FST 2 z position	[45, 100 cm]		
FST 5 z position	[100, 150 cm]		
FTTL z postion	[156, 183 cm]		

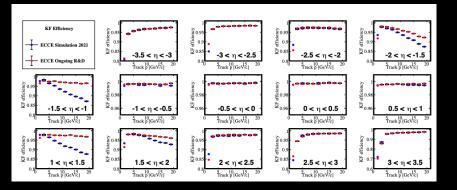
- Objective functions Average of Weighted Averages (n_obj ≥ 3)
 - Momentum resolution dp/p
 - \bigcirc Theta resolution d θ
 - \bigcirc Projected d θ at PID location.
 - Kalman Filtering inefficiency (improving the tracking reconstruction ability of the algorithm)
- Validation of the solutions
 - \bigcirc Validate by comparing optimal vs baseline darphi

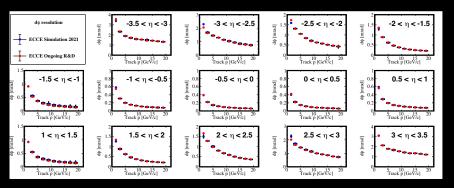

resolution, vertex resolution and reconstruction efficiency

Weighted sum with errors

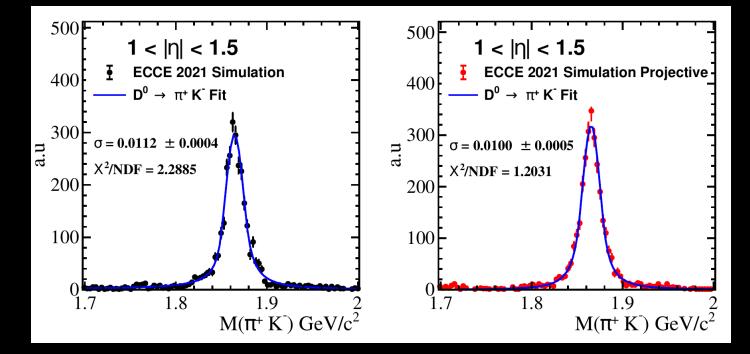



Weighted sum with errors


Summarizing the MOGA pipeline


II Evolution of Detector Perform

Momentum Resolution



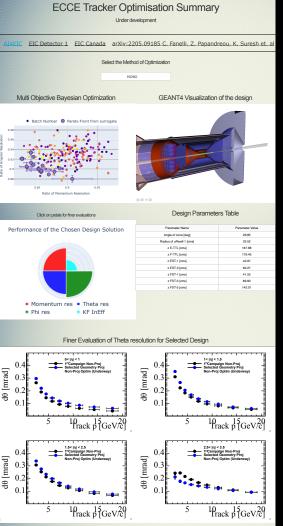
KF Efficiency

θ resolution

II Post-hoc validation on physics observables

The π +K- invariant mass obtained from the SIDIS events with updated baseline and recent version of optimized projective geometry.

A region of eta sensitive due to materials for support structure is considered for optimization.


Summary

- EIC is one of the first experiments to be designed with the support of AI
- Optimization is continuous and iterative. The current tracking system is an AI-assisted design. <u>arXiv:2205.09185</u>
- For the "first" time -> framework integrating the GEANT4 based simulation coupled to MOO has been developed with massive parallelization.
 - Modular framework : applicable to EIC Detector-1. Ongoing work to optimize tracker + PID detectors.
 - Pareto solutions can be explored post hoc and decision making can be done based on cost, engineering, physics realization etc.

CAP CONGRESS / CONGRÈS DE L'ACP

JUNE 5-10 JUIN MCMASTER UNIVERSITY | HAMILTON, ON www.cap.ca/congress/2022 | www.cap.ca/congres/2022

13