

Quantum caustics in many body dynamics

Duncan O'Dell McMaster University

CAP, 6 June 2022

The Team

Wyatt Kirkby (—> Innsbruck)

Jesse Mumford (—> Red Deer College)

Aman Agarwal (—> Perimeter Institute)

Manas Kulkarni International Centre for Theoretical Sciences (Bengaluru)

Natural focusing: caustics

Descartes 1637

Einstein 1912

Zeldovich 1981

Kelvin 1905

Pelinovsky 2003

Berry 2005

Catastrophe theory: structurally stable singularities

Each surface represents a bifurcation where the number of solutions changes (rays are born/die)

Quantum caustic example 1: Bosonic Josephson junctions

BEC in a double well potential

$$H = \frac{E_c}{2}n^2 - E_J\cos\phi$$

where:

number difference

phase difference

Albiez et al, PRL **95** 010402 (2005)

Classical field dynamics following a quench

Sudden connection of two independent BECs (initial state = Fock state)

truncated Wigner approximation:

quantum: $[\hat{\phi}, \hat{n}] \approx i$

 $[\]lambda \equiv 2E_J/E_c$

Quantum field dynamics following a quench

Cusps in Fock space: meanfield singularities are regularized by second-quantization

Quantum catastrophes

Quantum caustic example 2: BEC in a triple well

Triple well: elliptic umbilic

 $\hat{H} = -K_L(\hat{a}_1^{\dagger}\hat{a}_2 + \hat{a}_2^{\dagger}\hat{a}_1) - K_R(\hat{a}_2^{\dagger}\hat{a}_3 + \hat{a}_3^{\dagger}\hat{a}_2) - K_X(\hat{a}_3^{\dagger}\hat{a}_1 + \hat{a}_1^{\dagger}\hat{a}_3) + \frac{U}{2}\sum_{i=1}^3 \hat{n}_i(\hat{n}_i - 1) + \sum_{i=1}^3 \epsilon_i \hat{n}_i$

Triple well: hyperbolic umbilic

Quantum caustic example 3: coupled 1D superfluids

Two coupled 1D superfluids

model

T. Schweigler, V. Kasper, S. Erne, I. Mazets, B. Rauer, F. Cataldini, T. Langen, T. Gasenzer, J. Berges & J. Schmiedmayer, Nature 545, 323 (2017)

> Luttinger parameter $K = \sqrt{\frac{n_{1D}(\hbar\pi)^2}{4g_{1D}m}}$

$$\frac{d\phi(z)}{dt} = 2\Gamma\rho(z)$$

$$\frac{d\rho(z)}{dt} = 2\epsilon \frac{\partial^2 \phi(z)}{\partial z^2} - 2\mathcal{J}\sin[\phi(z)]$$

$$\frac{d\rho(z)}{dt} = 2\epsilon \frac{\partial^2 \phi(z)}{\partial z^2} - 2\mathcal{J}\sin[\phi(z)]$$

$$\frac{d\rho(z)}{difference}$$

$$\frac{d\rho(z)}{difference}$$

$$\frac{d\rho(z)}{difference}$$

 $\Gamma = \frac{\pi}{2K}$ $\epsilon = \frac{K}{2\pi}$

Thermal initial conditions

14

Tomonaga-Luttinger theory

$$H_{\rm TL} = \frac{ac\hbar}{2} \sum_{k=-N_L/2}^{N_L/2} \left[\frac{K}{\pi} \frac{4\pi^2 k^2}{L^2} |\varphi_k|^2 + \frac{\pi}{K} |\varrho_k|^2 \right]$$
(Fourier space)

quasi-condensate regime: *K*>1

Symbol	Parameter	Value
ω_{\perp}	trapping frequency	$2\pi \times 3 \text{ KHz}$
m	mass of Rb atom	$1.41\times 10^{-25}~{\rm Kg}$
$a_{\rm scat}$	scattering length	98 imes 0.52 [91]
N	Number of atoms	1200
L	System Length	$18~\mu$ m
n_{1D}	Average Density	$6.7 imes10^7m^{-1}$
g_{1D}	$2 \ \hbar a_{ m scat} \omega_{\perp}$	$2 imes 10^{-38} ~{ m J/m}$
K	Luttinger parameter	25
T*	Temperature	$10^{-7} - 10^{-9} K$
J*	J-quench	0 - 50 Hz
N_L*	Number of grid points	50 - 100

 $n_{1D}(\hbar\pi)^2$

Dynamics following sudden connection of two 1D superfluids

Each trajectory is a different set of initial conditions (sampled from thermal distribution)

Summary

- Dynamics following quenches lead to **caustics** (in Fock or real space)
- Universality in quantum dynamics!
- Structural stability
- Strong fluctuations (nongaussian)
- Underlying mathematical description is catastrophe theory

See posters at Tuesday's poster session 17:30-19:00

Denise Kamp "Quantum catastrophes in a rotating BEC" [poster 3]

Liam Farrell "Logarithmic catastrophes and Stokes's phenomenon in waves at horizons: Hawking radiation" [poster 23]

Signature of caustics in non-thermal probability distribution

Wave Catastrophes

