USING SYNCHROTRON RADIATION TECHNIQUES AS A TOOL IN INVERTEBRATE PALEONTOLOGY

Jerit Mitchell, MSc student University of Regina June 8

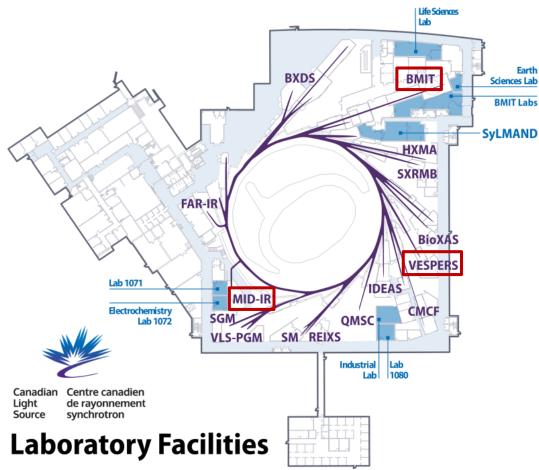
CAP Congress 2022

Canadian Association of Physicists

Association canadienne des physiciens et physiciennes

MOTIVATION

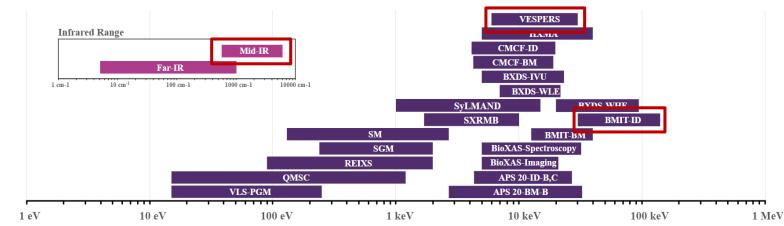
Jurassic Park: Fact or Fiction?


- Paleontology research has become increasingly analytical in the last decade, employing techniques and analysis usually governed by chemists and physicists
- Insects make up 80% of known species and give information on diversity of life on Earth millions of years ago.

What is Amber?

- Amber is fossilized tree resin
- Small creatures can get trapped before the resin hardens.
- Similar properties to glass, which acts as a shield for inclusions.
- Best preservation of organic, soft tissue material in life-like 3-D

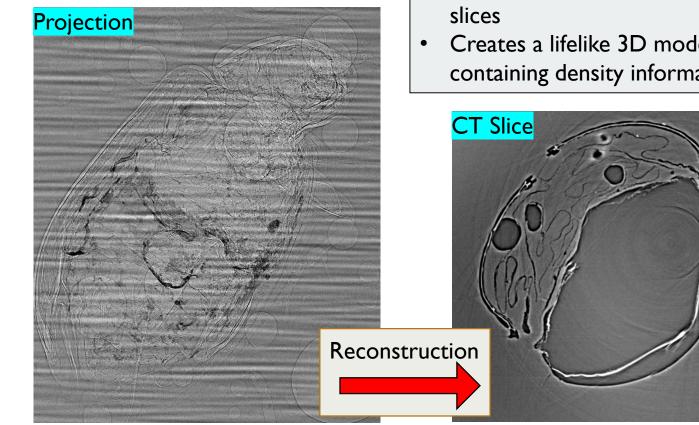
Selected synchrotron techniques:


- Computed Tomography (CT)
- Fourier Transform Infrared Spectroscopy (FTIR)
- X-Ray Fluorescence (XRF)

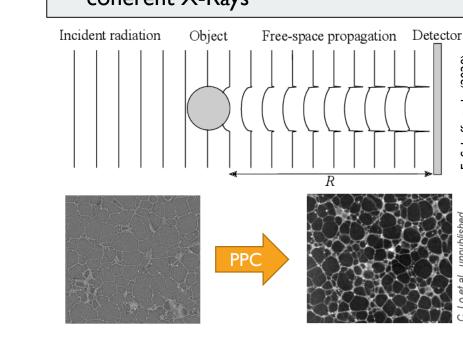
THE SYNCHROTRON ADVANTAGE

Synchrotron radiation is produced by acceleration of charged particles in specialized light source facilities

Synchrotron radiation is useful since its:


- Suited for wide range of analysis using specialized beamlines
- Non-destructive
- High Brightness => better resolution + faster acquisition times
- Useful for heterogeneous geological samples

COMPUTED TOMOGRAPHY (CT) **PHYSICS PRINCIPLES**



Biomedical Imaging and Therapy Facility

- Bulk X-Ray absorption through a sample, reconstructed over 180° in
- Creates a lifelike 3D model containing density information

CT Basics

Propagation Phase Contrast (PPC)

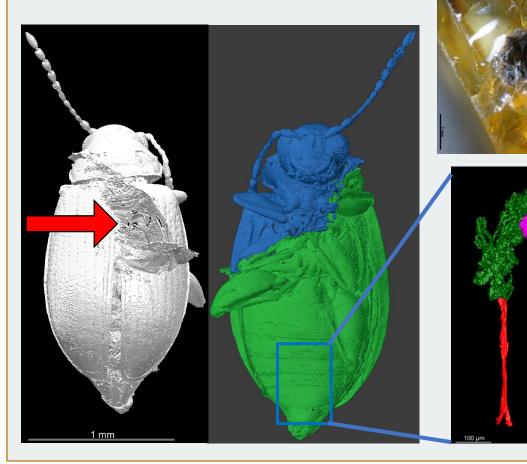
- Records interference of waves refracted from the sample in order to highlight structures with small changes in indices of refraction
- Synchrotron light provides highly coherent X-Rays

CT RESULTS

Leaf beetle from Baltic Amber (44 Ma)

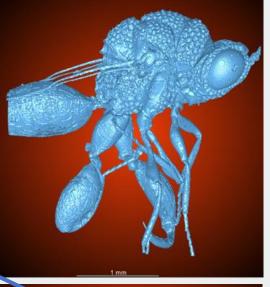
•

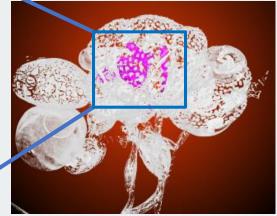
.

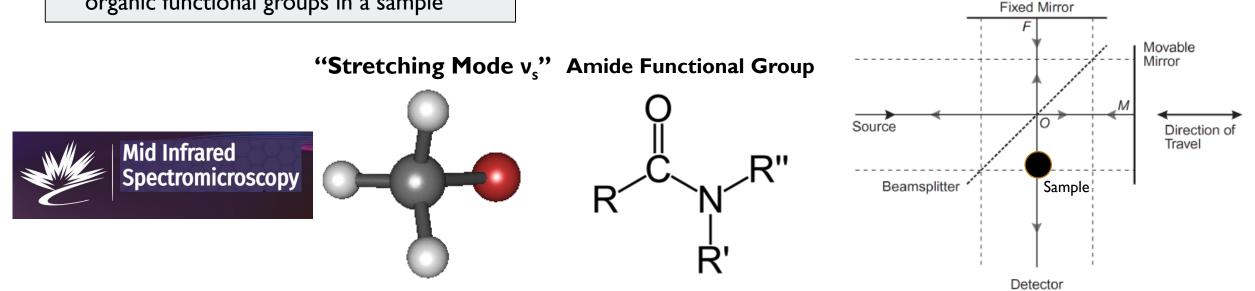

- Genitalia is preserved, useful for taxonomy
- Used for organic preservation studies

Wasp from Dominican Amber (16 Ma)

- Better preservation than Baltic amber
- Individual muscle fibers are preserved
- Used for chemical studies

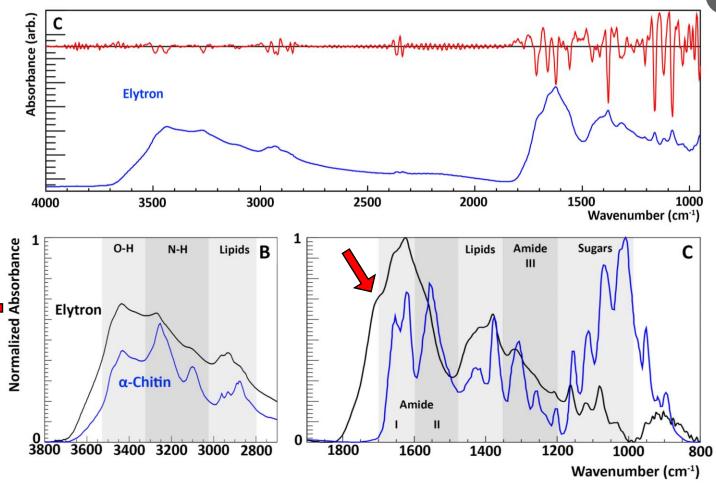



Leaf beetle

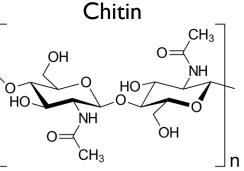

INFRARED SPECTROSCOPY (FTIR) PHYSICAL PRINCIPLES

IR Basics

- Atomic bonds ≈ Harmonic oscillator with characteristic vibrational frequency
- The main vibrational excitations for molecules occur in the infrared region (wavenumber range 4000 cm⁻¹ – 400 cm⁻¹)
- Provides a finger prints for organic functional groups in a sample

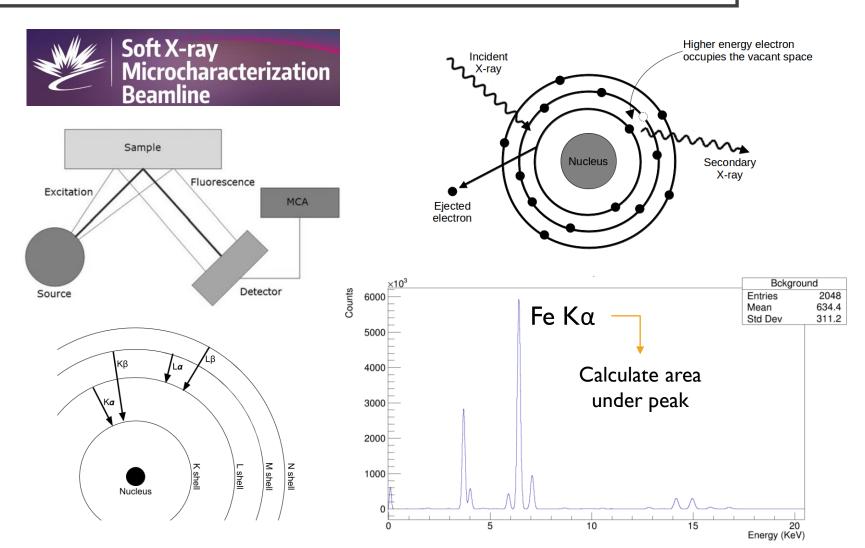

Synchrotron Fourier Transform Spectroscopy

- Using a polychromatic synchrotron IR beam can speed up spectral acquisition and improve signal-to-noise ratio
- A Michelson interferometer is used with a movable mirror to record the spectrum in position space, which can be converted back to frequency space


FTIR RESULTS

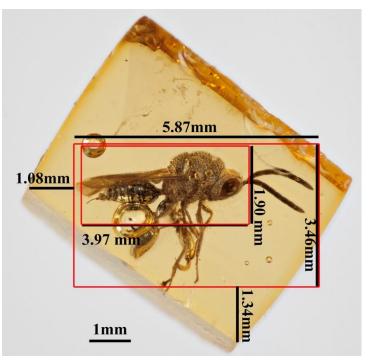
Elytron Peak Frequency (cm ⁻¹)	α -chitin Reference (Hassainia ¹⁹) Peak	α -chitin Reference	Denla	
		(Cárdenas ¹⁸) Peak	Band Assignment	Organic Component
	Frequency (cm ⁻¹)	Frequency (cm ⁻¹)	(0.11)	
3490	3483*	3479	v(O-H)	
3439	3428	3448	<i>v</i> (О-Н)	
3266	3254	3268	$v_{as}(N-H)$	Amide A
3099	3100	3102	$v_s(N-H)$	Amide B
2967	2960	2965	$v_{as}(CH_3)$	Lipid
2927	2932	2927	$v_s(CH_2)$	Lipid
2873	2876	2883	$v_{as}(CH_3)$	Lipid
2850	-	-	$v_s(CH_2)$	Lipid
1772	-	-	?	4
1713	-	-	v(C=O)	Oxidation
1661	1652	1660	v(C=O)	Amide I
1623	1621	1627	v(C=O)	Amide I
1558	1556	1558	$v(C-N) + \delta(N-H)$	Amide II
1453	-	-	$\delta(CH_2)$	Lipid
1418	1428	1422	$\delta(CH_2)$	Lipid
1379	1376	1376	δ (CH) + δ (C-CH ₃)	Lipid
1320	1308	1312	$v(C-N) + \delta(N-H)$	Amide III
1259	1260	1255	δ (N-H)	Amide III
1207	1207	-	δ (N-H)	Amide III
1163	1156	1157	v_{as} (C-O-C, ring)	
1120	1114	1113	v(C-O)	Sugar
1080	1069	1072	v(C-O)	Sugar
1032	1029*	-	v(C-O)	Sugar
1015	1008	1021	v(C-O)	Sugar

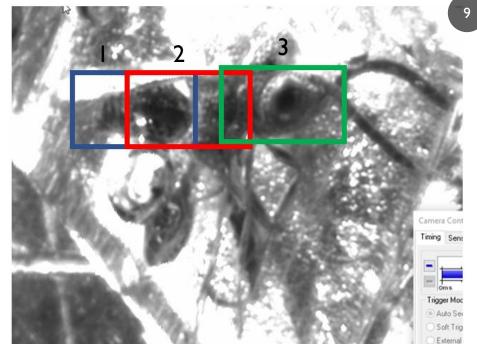
- Chitin is a sugar-based molecule that strengthens insect exoskeletons
- Organics will be altered through decay; broadening of peaks and introduction of new peaks in the IR spectrum
- Oldest reported chitin from an insect (44 Ma), and is not highly degraded

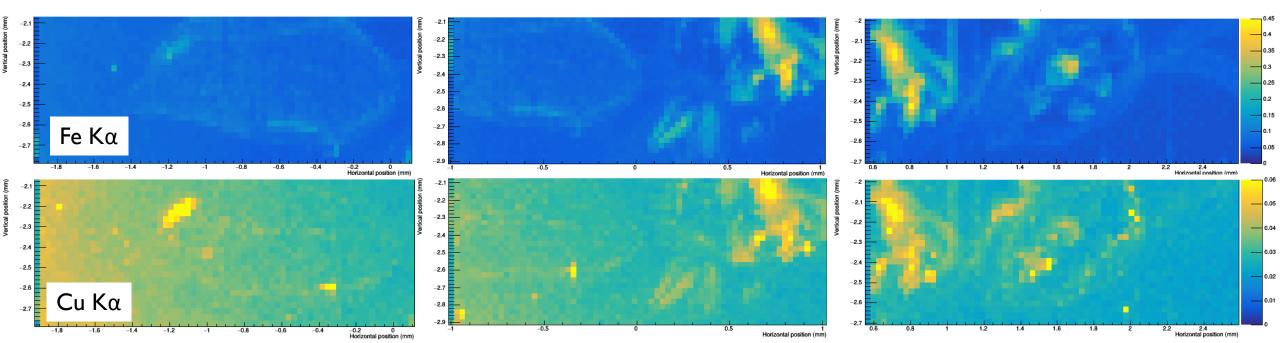

X-RAY FLUORESCENCE (XRF) PHYSICAL PRINCIPLES

XRF Basics

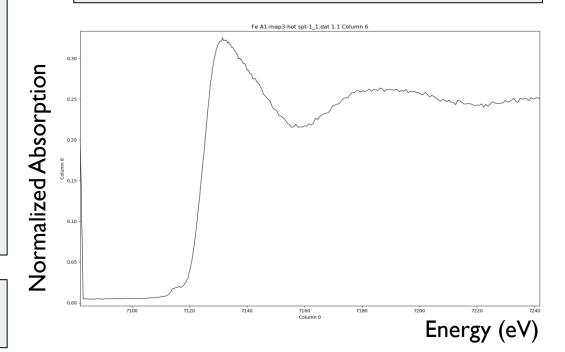
- Ionized atoms will de-excite, emitting characteristic characteristic fluorescent X-Rays
- All of the emitted X-Rays from a sample enter a detector where their energy is recorded in a histogram


Chemical Mapping/Imaging


- If the spectrum is measured at each location on a grid of points, we can create a chemical intensity map for a given element
- Fossils are heterogeneous and important for how minerals track through fossilization



- High concentrations of iron and copper, other elements negligible
- Iron is related to preservation of soft tissues. The flight muscles show up as extremely rich in iron.
- Copper can show original colour patterns of insect exoskeletons. It is associated with the iron here.


CONCLUSIONS

- **Synchrotron radiation** can be used to improve resolution and acquisition times of a wide collection of imaging and chemical analysis techniques that are non-destructive for precious fossils
- Using **CT**, we can model objects and their interior in 3D with micron resolution:
 - We were able to digitally extract ancient insects that are trapped amber allowing us to understand their evolution and structure
- Using **FTIR**, we can characterize organic signatures in a sample:
 - We were able to find organic chitin preserved in a 44 Ma beetle, extending the temporal range for this level of preservation
- Using **XRF**, we can determine qualitatively and quantitatively the elemental composition of a sample
 - We were able to determine possible mechanisms of preservation of muscle fibers in a 19 Ma wasp related to high concentrations of iron and copper

Organic material and soft tissues may be more commonly preserved in fossils than conventional paleontology states

Other techniques include:

 Synchrotron X-Ray Absorption Near Edge Structure (XANES)

ACKNOWLEDGEMENTS

REFERENCES

Thank you to:

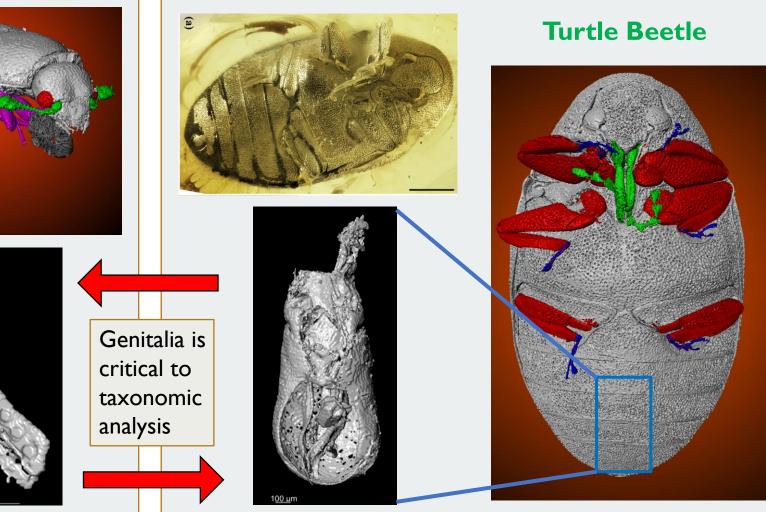
My supervisors: Dr. Ryan McKellar Dr. Mauricio Barbi Canadian Light Source and beamline scientists Dr. Andris Bukejs for taxonomic analysis MITACS Accelerate for funding

- P. Griths, J. Haseth. (2007). "Fourier Transform Infrared Spectrometry", Second Edition. Wiley.
- B. C. Smith. (2011). "Fundamentals of Fourier Transform Infrared Spectroscopy". CRC Press.
- M. Haschke. (2014). "Laboratory Micro-X-Ray Fluorescence Spectroscopy: Instrumentation and Applications". Springer.
- B. Beckho, B. Kanngieer, N. Langho, R. Wedell, H. Wol. (2008). "Handbook of Practical X-Ray Fluorescence Analysis". Springer.

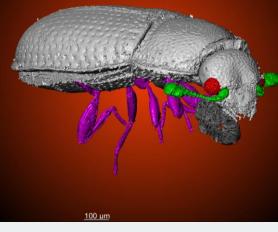
CT RESULTS

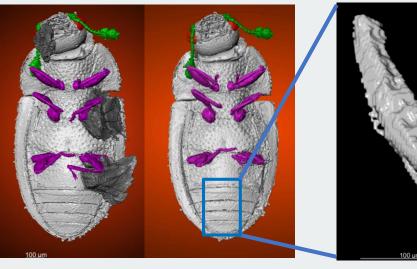
Insects from Baltic Amber (44 Ma)

- Amber and decay artifacts can be removed using 3D rendering software
- Two new fossil species!

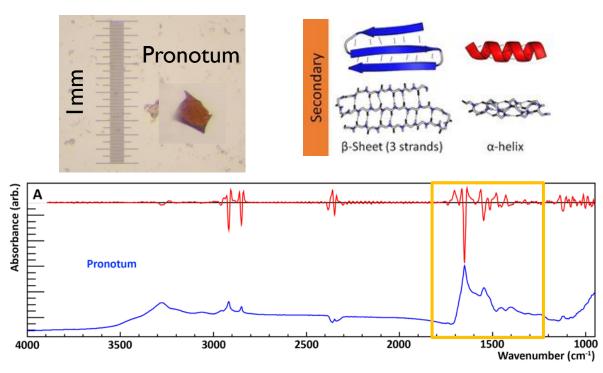

The first described turtle beetles from Eocene Baltic amber, with notes on fossil Chelonariidae (Coleoptera: Byrrhoidea)

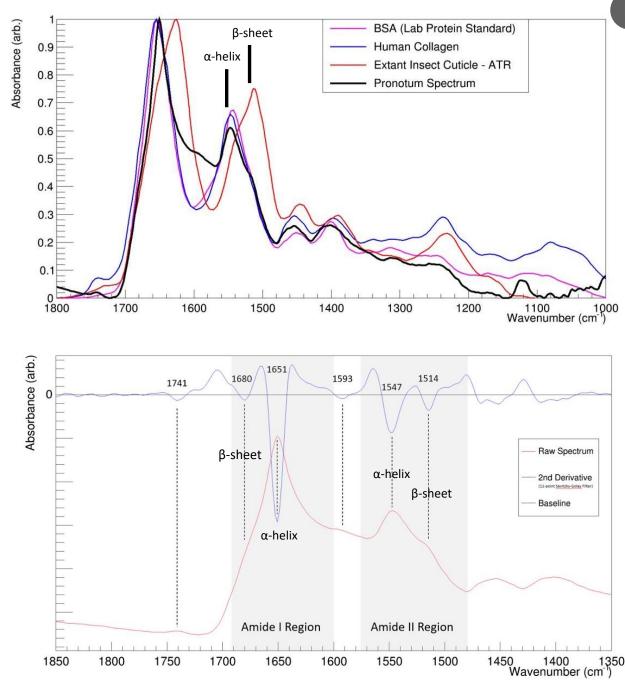
12


Vitalii L Alekseev^{1,2}, Jerit Mitchell³, Ryan C. McKellar^{4,5,6}, Mauricio Barbi³, Hans C. E. Larsson⁷, and Andris Bukejs⁸


First fossil representative of Cerylonidae (Coleoptera: Coccinelloidea) described using X-ray micro-computed tomography, from Eocene Baltic amber

ANDRIS BUKEJS'', ADAM ŚLIPIŃSKF, JERIT L. MITCHELL', RYAN C. MCKELLAR^{4,5,6}, MAURICIO BAR-BP, HANS C.E. LARSSON' & VITALII I. ALEKSEEV^{4,9,10}





- The spectral second derivative can be used to deconvolute peaks
- Amides contain sub bands due to transition dipole coupling => can give info on protein secondary structure
- This spectrum contains predominantly α -helix structure and therefore is likely due to a human contaminant

13