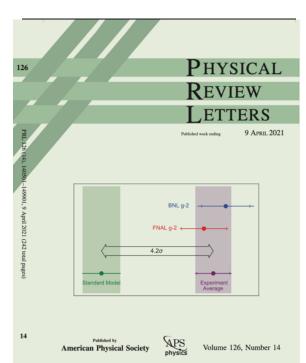


First results from the Muon g-2 Experiment at Fermilab


Chris Polly, Fermi National Accelerator Laboratory

The results heard round the world!

- Worldwide press coverage
 - Over 3000 media outlets covered the story
 - Total estimated media reach of those outlets > 6 billion people! (Pop. Earth 7.7 billion)

A Particle's Tiny Wobble Could Upend the Known Laws of Physics Adventurers Fleeing Pandemic

By DENNIS OVERBYE Evidence is mounting that a tiny subatomic particle seems to be disobeying the known laws o physics, scientists announced on Wednesday, a finding that would open a vast and tantalizing hole in understanding of the uni

ontinued on Page A18

The result, physicists say, sug-sts that there are forms of mat-

is that there are forms of mai-and energy vital to the nature d evolution of the cosmos that enolyse known to science. "This is our Mars rover landing ment", said Chris Polly, a systeist at the Fermi National celerator Laberatory, or Fermi-king toward this finding for a for the science of the most which is are scrittly is rown, which is a finding for

on, which is akin to an eles ron but far heavier, and is an inte element of the cosmos. Dr ily and his colleagues - an in onal team of 200 physicists even countries — found that did not behave as pre-

d when shot through an in-e magnetic field at Fermilab.

A ring at the Fermi National Accelerator Laborat ry in Illinois is used to study the wobble of muons

particles in the universe (17, at last The results, the first from an ex- conference on Wednesday, Dr. (when shot through as its particles into universel (1, attaut) The result, the fuel (remarks, the fuel (r

Strain the West's Rescue Teams

By ALI WATKINS PINEDALE, Wyo. - Kenn PINEDALE, Wyo. — Kenna haner and her toam can list the ases from memory: There was be woman who got tired and did otfeel like finishing her hike; the ampers, in shorts during a bliz-ard; the base jumper, misjudging is how few a traveleneous measure. is leap from a treacherous gran te cliff face; the ill-equipped nowmobiler, buried up to his eck in an avalanche. All of them were pulled by Ms. Tanner and the Tip Top Search and Rescue crew from the rugged

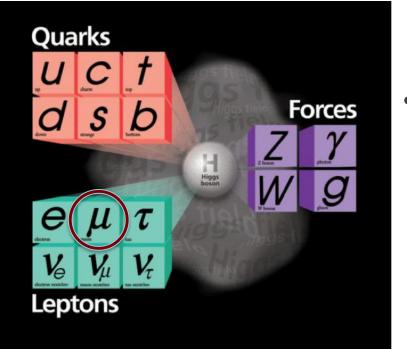
tar, in this s

A trail in the Wind River Range in western Wyo

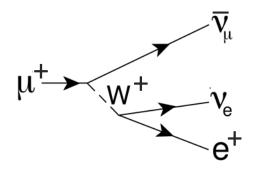
enturers explore the treacherou terrain of the backcountry, many inevitably call for help. It has strained the patchwork, volun-teer-based search-and-rescue Continued on Page A17

Slide from first FNAL colloquium on g-2

Exciting time for new Fermilab muon program



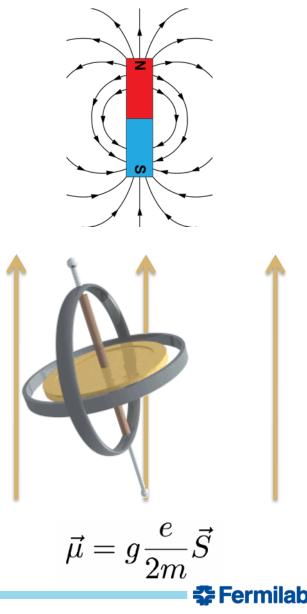
Muon Campus today



Muons in the Standard Model

Fundamental building blocks of the Standard Model

- Similar to electrons
 - Same charge
 - Same spin properties
- Important differences
 - 200x more massive
 - Unstable, live ~2 millionths of a second before they decay



Muon g-2 measures the muon's magnetic moment

- Because of their spin & charge, muon's act like little bar magnets and have a magnetic moment, μ
- Like a bar magnet, they feel a torque when placed in a magnetic field

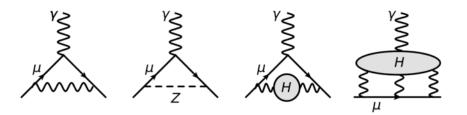
$$\vec{\tau} = \vec{\mu} \times \vec{B}, \ U = -\vec{\mu} \cdot \vec{B}$$

 That torque causes the muon spin to precess around the magnetic field at a rate that increases or decreases depending on the strength of µ & B

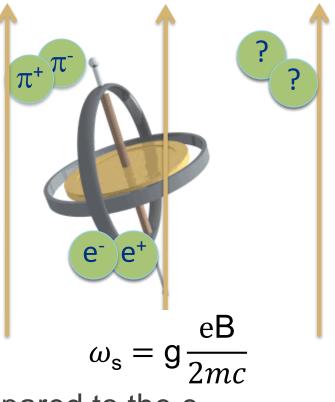
The g-factor

 The strength of the magnetic moment can be written in terms of fundamental constants and an overall coefficient called the g-factor

$$\vec{\mu} = g \frac{e}{2m} \vec{S}$$


• g = 1

- This was the classical expectation around 1900
- g = 2
 - Folding in relativistic quantum mechanics, the expectation was shown to be 2 by Thomas and predicted by Dirac's wave equation
- As you can guess from the experiment name, Muon g-2, there is more to the story...

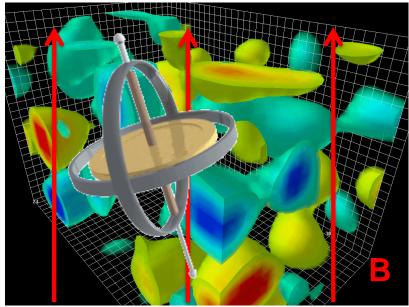

The anomalous magnetic moment, a_{μ}

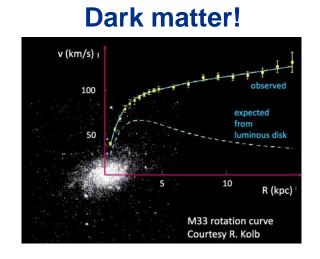
- Particles are never truly alone, constantly surrounded by an entourage of other particles blinking in and out of existence
- What particles? All of them!

• The anomalous magnetic moment, a_{μ} , is the interesting part

$$a_{\mu} = \frac{g-2}{2}$$

🔁 Fermilab

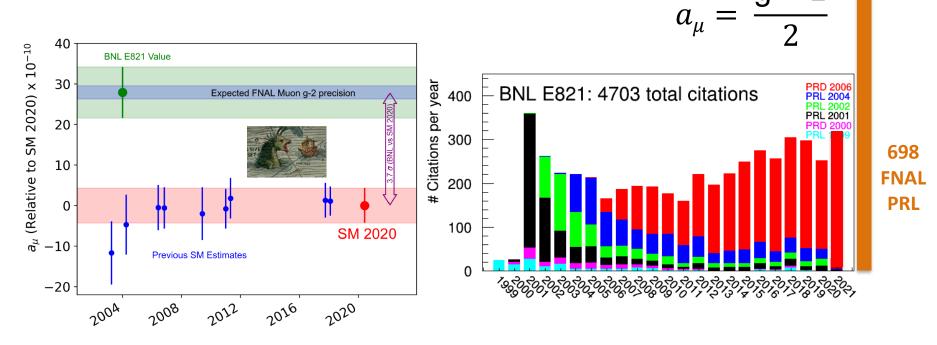

m² scaling → 40,000x sensitivity compared to the e-


New physics search

- Measuring the precession tells us the muon magnetic moment
- The high precision allows us to 'see' if new particles or forces are contributing to the anomaly!

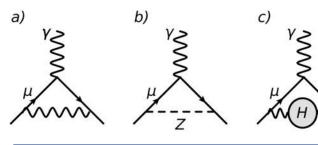
$$a_{\mu} = \frac{\mathsf{g}-2}{2}$$

SUSY! **SUSY** particles b g Higgsino \widetilde{v}_{τ} \widetilde{v}_{μ} Ž Ve W е μ Sleptons SUSY force Squarks narticles



A hint of new physics from BNL

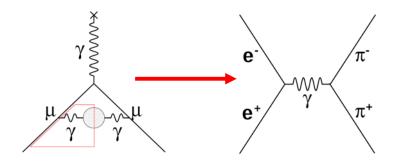
• a_{μ} last measured 20 years ago at Brookhaven National Lab (BNL) where an interesting 2.7 σ hint of new physics was discovered


– Over time it grew to 3.7σ with improvements in theory

Fermilab

- The difference has intrigued physicists for years
 - Difference is ~270 x 10⁻¹¹ in a_{μ}

Theoretical status of a_u



a)	γZ		•
	S	_	
Ş	Н	2	
<u></u>	Ş	5	•

1

Source	Value (a _µ x 10 ⁻¹¹)	Error
a) QED	116 584 718.9	0.1
b) EW	154	1
c) HVP	6845	40
d) HLBL	92	18

Muon g-2 Theory Initiative arXiv:2006.04822

- QED and EW are extremely
 well known
 - Hadronic terms are more difficult due to nonperturbative nature of QCD
 - HVP can be determined from
 e⁺e⁻ → hadrons data
 - Lattice calculations starting to reach required precision

🛟 Fermilab

$$a_{\mu}^{had,1} \propto \int_{2m_{\pi}}^{\infty} ds \frac{K(s)}{s} R(s)$$
$$R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \text{muons})}$$

6/8/2022

Bringing g-2 to Fermilab

- Goal: Bring the container used to hold the muons from BNL and couple it to Fermilab's powerful accelerator beam
- Reduce the overall error by a factor of 4 to 140 ppb
 - 20x the muons → 100 ppb stat error from (4.5x better)
 - systematics at the same
 100 ppb level (3x better)

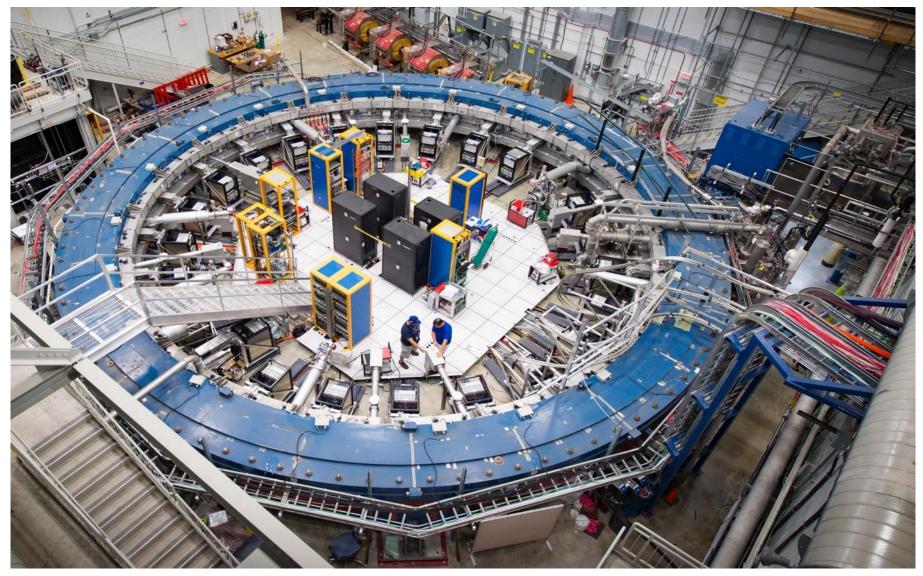
Brookhaven Muon Storage Ring

Parts of the 50' diameter storage ring could not come apart!!

Storage ring transported by land/sea in 2013

Including 30 miles of Chicago suburbs!

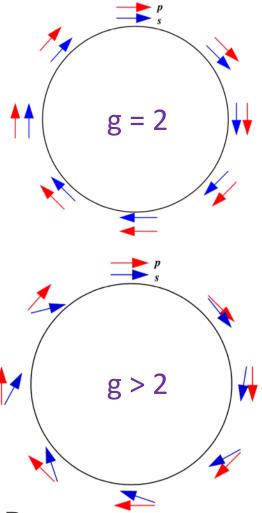
Amazing photo ops



All put back together at Fermilab!

Why use a storage ring?

• The rate that the muon spin rotates, ω_s , with respect to the cyclotron frequency, ω_c , is given by


$$\vec{\omega}_a = \vec{\omega}_s - \vec{\omega}_c = -\left(\frac{g_\mu - 2}{2}\right)\frac{q\vec{B}}{m} = -a_\mu \frac{q\vec{B}}{m}$$

• If g = 2 exactly, the spin and momentum vectors remain locked together $\rightarrow \omega_a = 0$

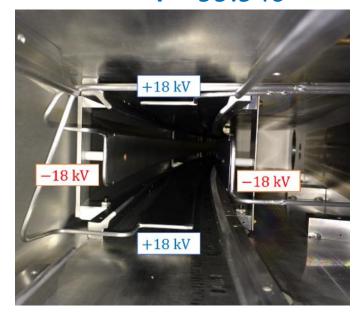
- But g = 2.0023... & (g-2)/2 = 0.0023...

- ω_a is directly proportional to a_µ
 → 800x more sensitive than expt at rest!
- To extract a_{μ} , we need to determine ω_{a} and B

$$a_{\mu} = \left(\frac{e}{m}\right)^{-1} \frac{\omega_a}{B}$$

Not quite as simple as $a_{\mu} = \left(\frac{e}{m}\right)^{-1} \frac{\omega_a}{B}$

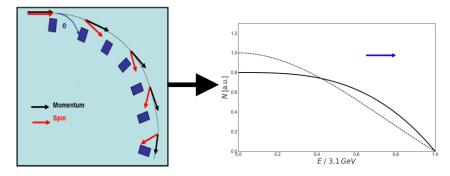
 Full BMT equation → spin precession modified by E-fields and nonperpendicular motion relative to B

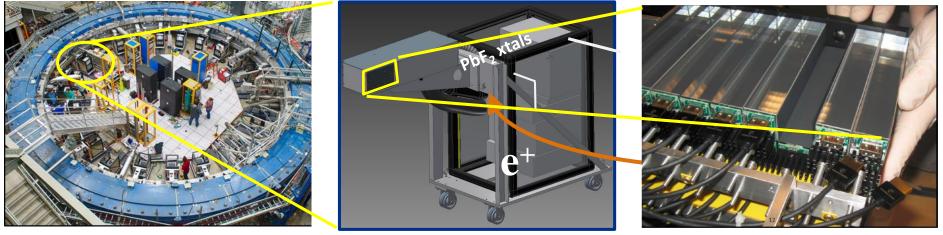

Electric field correction

$$\vec{\omega}_a \equiv \vec{\omega}_s - \vec{\omega}_c = -\frac{q}{m_\mu} \left[a_\mu \vec{B} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Pitch correction

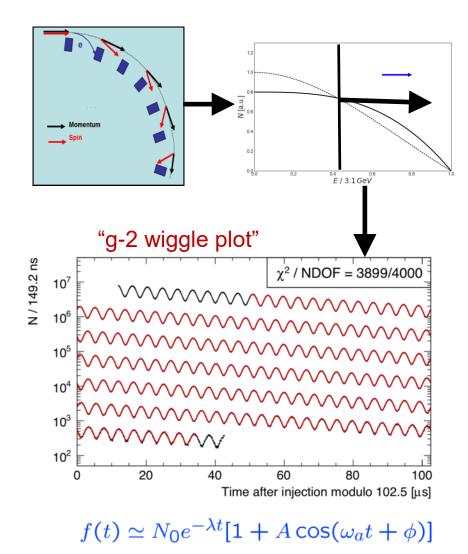
0, for $\gamma = 29.3$, v = 99.94c


- Experiment requires a quadrupole E-field to keep muon vertically confined → horizontal and vertical harmonic coherent betatron oscillation (CBO)
- Choosing to run at the 'magic momentum' minimizes impact of E-field



How do we measure a_{μ} ?

- Parity violation in muon decay → high energy decay positrons are preferentially emitted in the muon spin direction
- Measure the energy spectrum with detectors around the inside of the ring

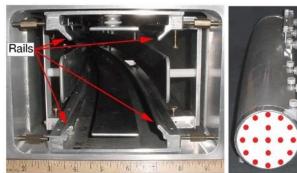


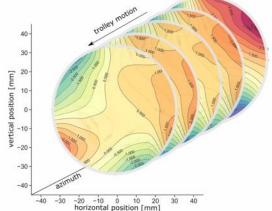
- Major upgrades from BNL:
 - 6x9 array to PbF2 crystals allows us to spatially separate pileup with better Cerenkov timing relative to the PbSciFi monolithic BNL calorimeters
 - 800 MHz waveform digitizers sample at twice the rate
 - Modern computing bandwidth allows us to keep data down to 0 threshold (1 GeV at BNL)
 - Sophisticated laser systems allows us to monitors gain changes at 1 part in 10⁴

Generating the 'wiggle plot'

🛟 Fermilab

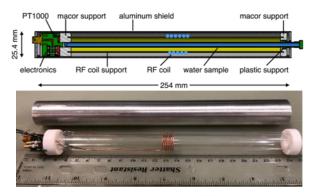
We also need B at < 100 ppb to determine a_{μ}


$$\omega_a \equiv \omega_s - \omega_c \equiv a_\mu \frac{eB}{mc}$$


378 fixed probes monitor 24/7

1	Serial inductor coil	Base piece w.	- 10 C -
End cap with	tapped hole	double crimp connection	Outer crimp ring
		and the second second	
		eum jelly volume	
			Inner crimp ring
	Inner conductor of capacitor PTFE tuning piece with slot		Parallel inductor coil

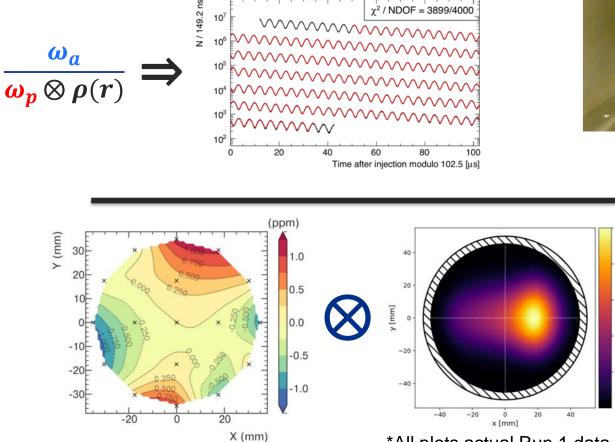
NMR trolley maps field every 3 days



Trolley cross-calibrated to absolute probes

Use NMR to find B-field in terms of proton

precession frequency ω_p (comagnetometer)



Absolute probes all crosscalibrated at ANL test magnet

Every field system upgraded, shimmed field 3x better, hall temp to +/- 1C
 Fermilab

The analysis 'big' picture

*All plots actual Run 1 data

🚰 Fermilab

- In vacuo straw trackers tell us the spatial distribution and many other muon beam properties (CBO, p-dist)
 - Also a major addition compared with BNL

Systematic error progress - ω_a

Run 1 stat

error 434 ppb

			спот то трро
	BNL actual [ppb]	FNAL TDR [ppb]	FNAL Run 1 [ppb]
Gain + residuals	120	20	19
Pileup	80	40	37
Lost muons	90	20	5
СВО	70	30	40
E-field/pitch	50	30	55
Phase acceptance	N/A	N/A	75
Total	180	70	108

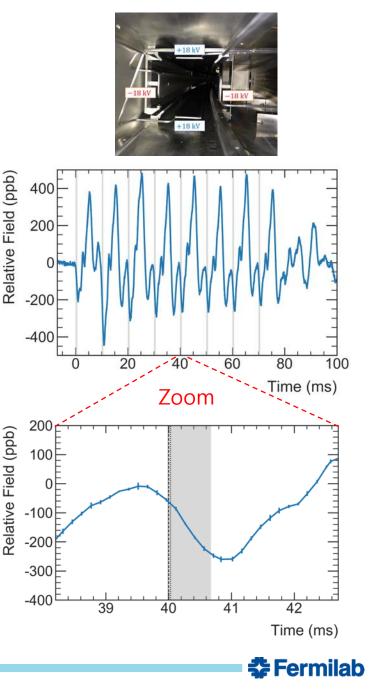
*Run 1 ω_a systematics are simple averages over 4 data sets, correlations approximate, BNL $\leftarrow \rightarrow$ FNAL mapping not perfect but close enough

- Run 1 only 6% total statistics, many systematics errors scale down with stats
- CBO driven by increased amplitude due to poor kick in Run 1&2, reduced x2 with kicker upgrades by Run 3
- E-field/pitch driven by impact of time/momentum correlations of the muon bunch at injection, will improve with better simulation and measurements
- Phase acceptance primarily due to failed quad resistors that led to beam instability, fixed in Run 2 and beyond
- On track to beat 70 ppb goal from Run 2 and beyond!

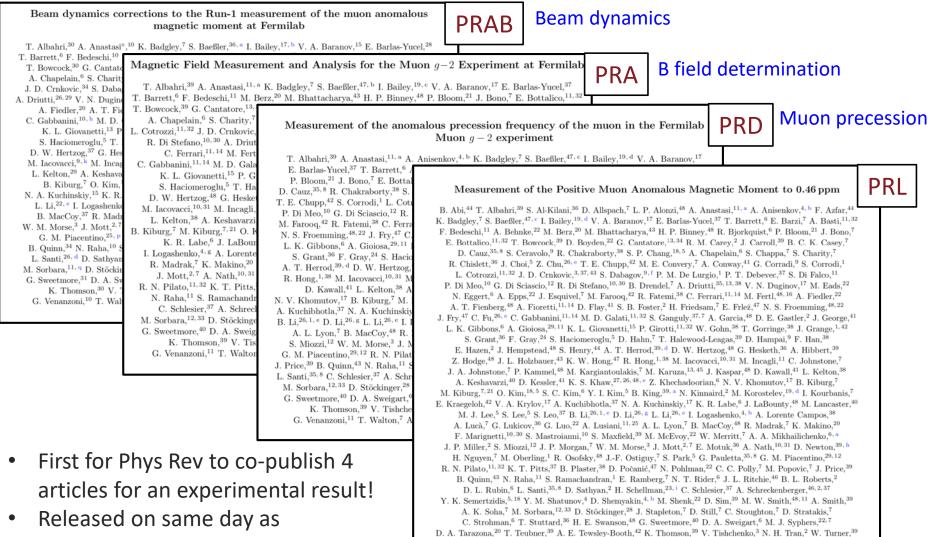
Systematic error progress - B

Run 1 stat error 434 ppb

	BNL actual [ppb]	FNAL TDR [ppb]	FNAL Run 1 [ppb]
Trolley calibration	90	30	32
Trolley B measurements	50	30	25
Fixed probe tracking	70	30	23
Muon weighting	30	10	20
Absolute calibration	50	35	19
Configuration	Under other	Under other	23
Kicker transients	Under other	Under other	37
Quad transients	Under other	Under other	92
Other	100	50	negligible
Total	170	70	114


*BNL $\leftarrow \rightarrow$ FNAL mapping not perfect but close enough

- Trolley calibration improves with more calibrations, trolley NMR sample temperature dependence better determined
- Muon weighting will improve due to better centered beam (kicker upgrade)
- Kicker/quad transients reduced to < 30 ppb with better mapping for Run 2 and beyond
- On track to beat 70 ppb goal from Run 2 and beyond!



B_q – **Quad transients**

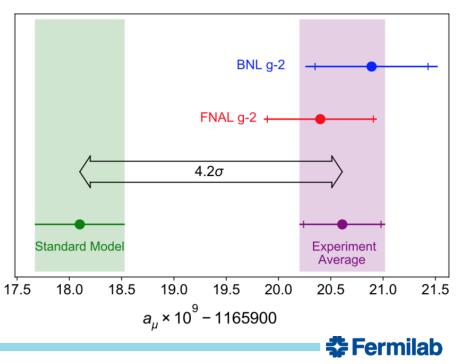
- Recall, E- field keeps muons vertically confined
- Quads pulsed → induces mech. vibrations → oscillating conductor perturbs B field
 - Deliver 8 muon bunches with 10 ms spacing → 3x closer to 100 Hz natural resonance than BNL
- Built special NMR probes to map the effect
 - Long process to make measurements
- Overall correction is 17 ppb
 - Only matters in window when muons are present, averaged over 8 bunches, averaged over 43% of ring with quad coverage
- 92 ppb Run 1 uncertainty is dominated by not having a complete map for Run 1
 - Analysis of more complete map is nearly done
 - Expect uncertainty to be reduced x3 for Run 2 and beyond

Four articles on arXiv and published in Phys Rev

D. A. Iarazona,⁻⁷ I. Icubner,⁻⁷ A. E. Iewsky-Boota,⁻⁷ K. Inomson,⁻⁷ V. Isinchenko,⁻⁷ N. H. Iran,⁻⁷ W. Iurner,⁻⁷ E. Valetov,^{20,1,27, d} D. Vasilkova,³⁶ G. Venanzoni,¹¹ V. P. Volnykh,¹⁷ T. Walton,⁷ M. Warren,³⁶ A. Weisskopf,²⁰ L. Welty-Rieger,⁷ M. Whitley,³⁹ P. Winter,¹ A. Wolski,^{39, d} M. Wormald,³⁹ W. Wu,⁴³ and C. Yoshikawa⁷ (The Muon q - 2 Collaboration)

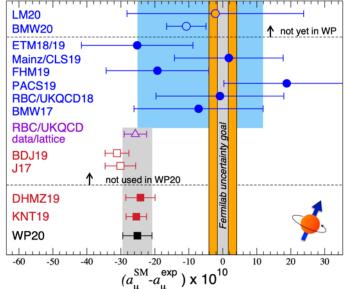
6/8/2022

26


announcement talk, ~a month

Chris Polly -- 2022 CAP Congress

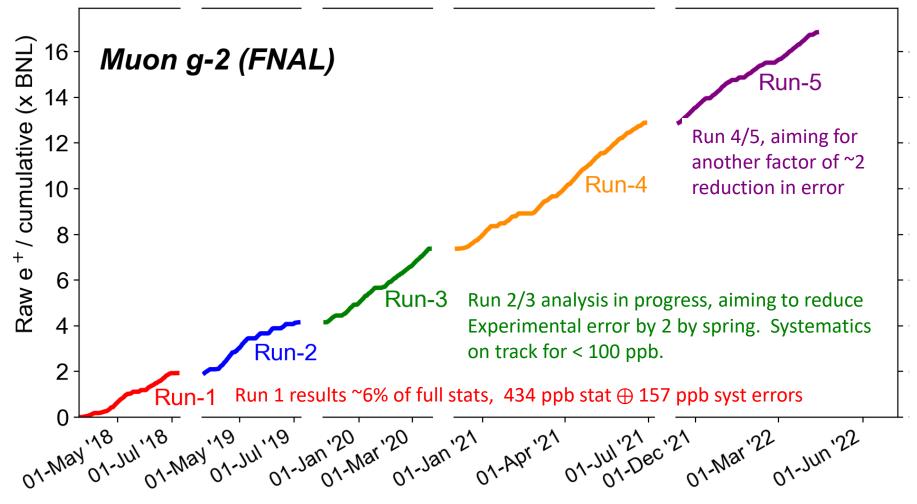
Final results from Run 1


Quantity	Correction Terms	Uncertainty
	(ppb)	(ppb)
$\overline{\omega_a^m}$ (statistical)	_	434
ω_a^m (systematic)	-	56
$\frac{\omega_a^m \text{ (systematic)}}{C_e}$	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$\overline{f_{\text{calib}}\langle\omega_p(x,y,\phi)\times M(x,y,\phi)\rangle}$	_	56
B_k	-27	37
B_q	-17	92
$\mu_{p}'(34.7^{\circ})/\mu_{e}$	_	10
m_{μ}/m_e	_	22
$g_e/2$	_	0
Total systematic	_	157
Total fundamental factors	_	25
Totals	544	462

- 462 ppb overall error
 - 434 ppb statistical
 - 157 ppb systematic
 - 25 ppb CODATA inputs
- Good agreement with BNL
- Combined tension with SM increases to 4.2σ

Conclusions

- We have determined a_{μ} to an unprecedented 460 ppb precision! $a_{\mu}(\text{FNAL}) = 116592040(54) \times 10^{-11}$
- The Run 1 result
 - 6% of ultimate data sample
 - 15% smaller error than BNL
 - 3.3 σ tension with e+e- SM
- After 20 years, we confirm the BNL experimental results!


🔁 Fermilab

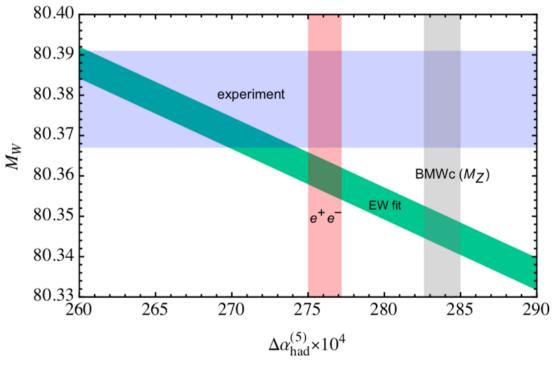
- Combining BNL/FNAL and comparing to e+e- based theory recommended by the Theory Initiative \rightarrow 4.2 σ tension with the SM
 - Lattice QCD (blue band) are becoming competitive, particularly BMW20, and indicate quark contributions might be larger (stay tuned)

Outlook Much more data to come!

Last update: 2022-04-12 20:16 ; Total = 16.84 (xBNL)

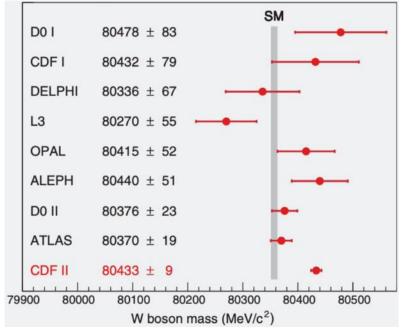
• Switching to μ - next year and aiming for 4x BNL μ - stats in Run 6

(The Muon g-2 Collaboration) ¹Argonne National Laboratory, Lemont, IL, USA ²Boston University, Boston, MA, USA ³Brookhaven National Laboratory, Upton, NY, USA ⁴Budker Institute of Nuclear Physics, Novosibirsk, Russia ⁵Center for Axion and Precision Physics (CAPP) / Institute for Basic Science (IBS), Daejeon, Republic of Korea ⁶Cornell University, Ithaca, NY, USA ⁷Fermi National Accelerator Laboratory, Batavia, IL, USA ⁸INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy ⁹INFN, Laboratori Nazionali di Frascati, Frascati, Italy ¹⁰INFN, Sezione di Napoli, Napoli, Italy ¹¹INFN, Sezione di Pisa, Pisa, Italy ¹²INFN, Sezione di Roma Tor Vergata, Roma, Italy ¹³INFN, Sezione di Trieste, Trieste, Italy ¹⁴Istituto Nazionale di Ottica - Consiglio Nazionale delle Ricerche, Pisa, Italy ¹⁵Department of Physics and Astronomy, James Madison University, Harrisonburg, VA, USA ¹⁶Institute of Physics and Cluster of Excellence PRISMA+, Johannes Gutenberg University Mainz, Mainz, Germany ¹⁷ Joint Institute for Nuclear Research, Dubna, Russia ¹⁸Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of ¹⁹Lancaster University, Lancaster, United Kingdom ²⁰Michigan State University, East Lansing, MI, USA ²¹North Central College, Naperville, IL, USA ²²Northern Illinois University, DeKalb, IL, USA ²³Northwestern University, Evanston, IL, USA ²⁴Regis University, Denver, CO, USA ²⁵Scuola Normale Superiore, Pisa, Italy ²⁶School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China ²⁷ Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China ²⁸ Institut fr Kern - und Teilchenphysik, Technische Universität Dresden, Dresden, Germany ²⁹Università del Molise, Campobasso, Italy ³⁰Università di Cassino e del Lazio Meridionale, Cassino, Italy ³¹Università di Napoli, Napoli, Italy ³² Università di Pisa, Pisa, Italy ³³Università di Roma Tor Vergata, Rome, Italy ³⁴Università di Trieste, Trieste, Italy ³⁵ Università di Udine, Udine, Italy ³⁶Department of Physics and Astronomy, University College London, London, United Kingdom ³⁷ University of Illinois at Urbana-Champaign, Urbana, IL, USA ³⁸University of Kentucky, Lexington, KY, USA ³⁹University of Liverpool, Liverpool, United Kingdom ⁴⁰Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom ⁴¹Department of Physics, University of Massachusetts, Amherst, MA, USA ⁴²University of Michigan, Ann Arbor, MI, USA ⁴³University of Mississippi, University, MS, USA ⁴⁴ University of Oxford, Oxford, United Kingdom ⁴⁵University of Rijeka, Rijeka, Croatia ⁴⁶Department of Physics, University of Texas at Austin, Austin, TX, USA ⁴⁷ University of Virginia, Charlottesville, VA, USA ⁴⁸ University of Washington, Seattle, WA, USA



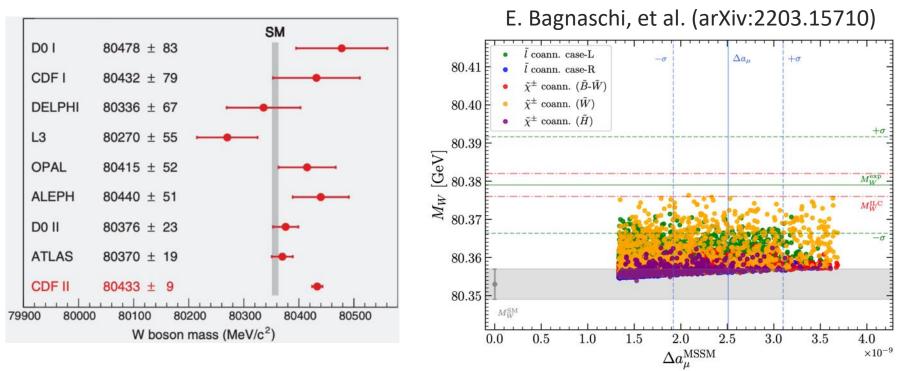
Thank you!

Interpretation: Implication for Precision EW fits?


- Increasing the crosssection for e+e- → hadrons also increases the strength of the fine structure constant
- Creates additional tension in the precision EW fits

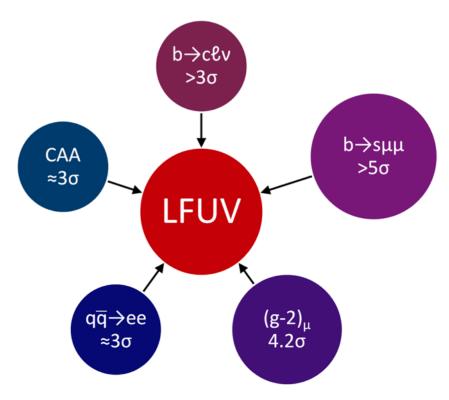
A. Crivellin, et al. (<u>link</u>)

Interpretation: Relationship to M_w



- CDF-II collaboration just published a result finding a much larger M_W
- Tension is much larger

🚰 Fermilab

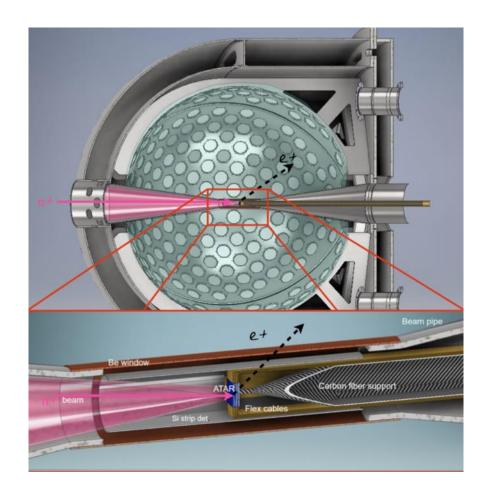

Interpretation: Relationship to M_w

- Still need to understand why the result is so much higher than others
- General feature that supersymmetric models predict larger than SM values for M_W and a_μ

Interpretation: Are we seeing evidence that lepton universality is violated?

Mounting Evidence for the Violation of Lepton Flavor Universality <u>https://arxiv.org/pdf/2111.12739.pdf</u> (A. Crivellin, M. Hoferichter)

- Quite a few measurements that include leptons in the final state are starting to show tension with SM predictions
- Many of these have avenues for continued improvement
- New efforts to test lepton universality being proposed


PIONEER Experiment

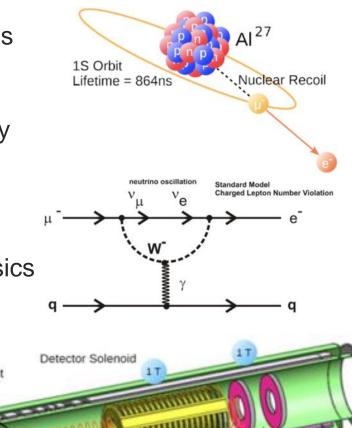
- Primary goal is to improve R_{e/μ}, the charged pion branching ratio to electrons vs muons, by an order of magnitude
 - R_{e/μ} thy uncertainty ~15x smaller than current exp (PIENU)
- Secondary goal to study pion beta decay

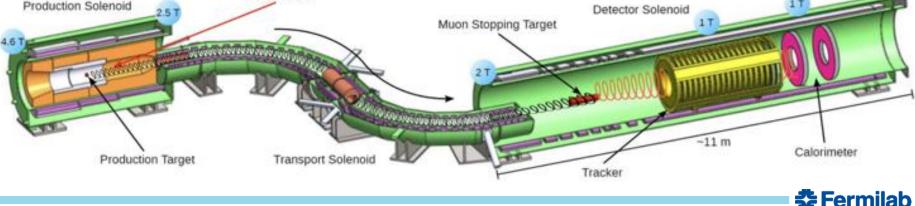
 $\pi^+ \to \pi^0 e^+ \nu(\gamma)$

and improve V_{ud} by an order of magnitude for theoretically clean CKM unitarity test

 Recently rate a high priority by the PSI PAC

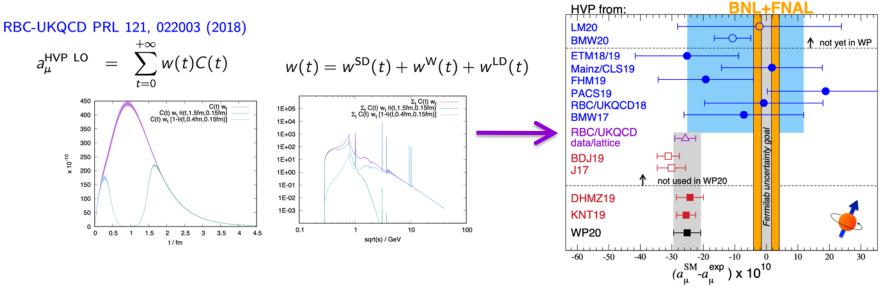
PIONEER PSI Proposal (arXiv:2203.01981) PIONEER Snowmass (arXiv:2203.05505)


Mu2e Experiment


• Mu2e is searching for muons spontaneously converting to electrons in the field of a nucleus

 $R_{\mu e} = \frac{\mu^- + A(Z, N) \rightarrow e^- + A(Z, N)}{\mu^- + A(Z, N) \rightarrow \nu_{\mu} + A(Z-1, N)}$

- Goal of the experiment is to reach a sensitivity to branching ratios of 3x10⁻¹⁷
 - 4 order of magnitude improvement over last experiment (SINDRUM II)
- Any signal is unambiguously due to new physics
 - SM contribution enters at below < 10⁻⁵⁰ level


Proton Beam

Hybrid approach data/lattice

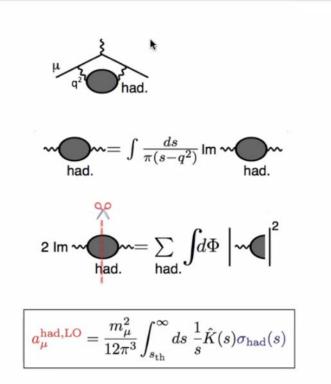
 Can take the e+e- → hadrons data and convert it from Minkowski into Euclidean space to directly compare to the lattice calculation

- Very short and long distances are where the lattice calculation errors grow, and systematics become more dominant
- Intermediate distances are where most of the e+e- $\rightarrow 2\pi$ data end up and is where there is tension in the data-driven approach
- Suggests a best-of-both-worlds approach combining e+e- data with lattice results wherever the errors are minimized

🔁 Fermilab

Lattice HVP outlook

 $a_{\mu} = a_{\mu}^{\rm SD} + a_{\mu}^{\rm W} + a_{\mu}^{\rm LD}$

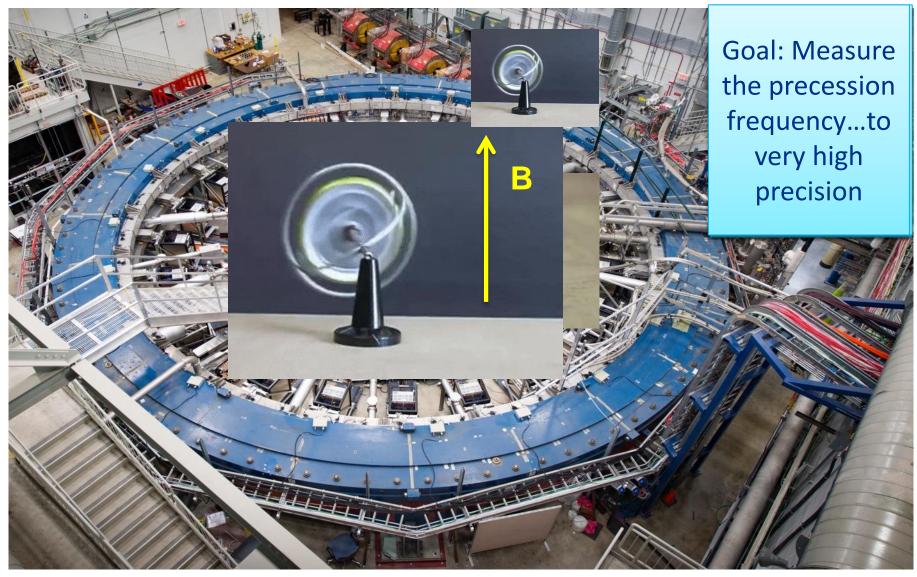

"Window" quantities (Plots from Davide Giusti) $(t_0, t_1, \Delta) = (0.4, 1.0, 0.15)$ fm $(t_0, \Delta) = (0.4, 0.15)$ fm $(t_1, \Delta) = (1.0, 0.15)$ fm Aubin et al. 19 Aubin et al. 19 - finest as FHM 20 (prelim., stat. only) њ LM 20 FHM 20 (prelim., stat. only) **BMW 20** \rightarrow RBC/UKQCD 20 (prelim., stat. only) ю FHM 20 (prelim., stat only) **RBC/UKQCD 18** ETMC 20 (prelim.) ETMC 20 (prelim.) ETMC 20 (prelim.) ÷ Mainz/CLS 20 f_-resc. (prelim.) Mainz/CLS 20 (prelim.) Mainz/CLS 20 (prelim.) Mainz/CLS 20 (prelim.) њ R-ratio & lattice њ 170 180 190 200 210 30 35 40 45 50 300 350 400 a ^{SD} (ud, conn, iso) * 10¹⁰ a ^W (ud, conn, iso) * 10¹⁰ a ^{LD} (ud, conn, iso) * 10¹⁰

- Comparing lattice calculation (and R-ratio) in the three Euclidean distance windows well help us find the tension
- Many other lattice groups aiming for similar precision to BMWc in the next year or two

Dispersion integral

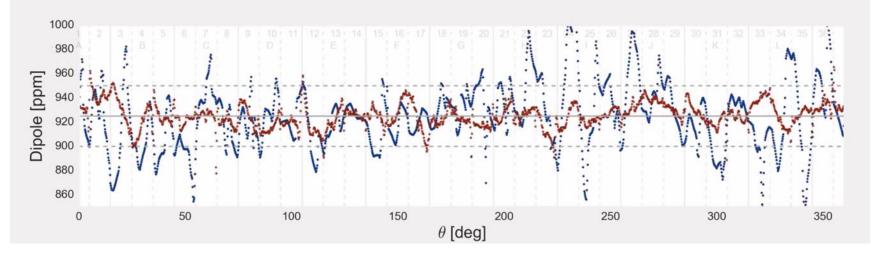
a^{HVP}: Basics principles of dispersive method for HVP

Original loop with hadronic VP

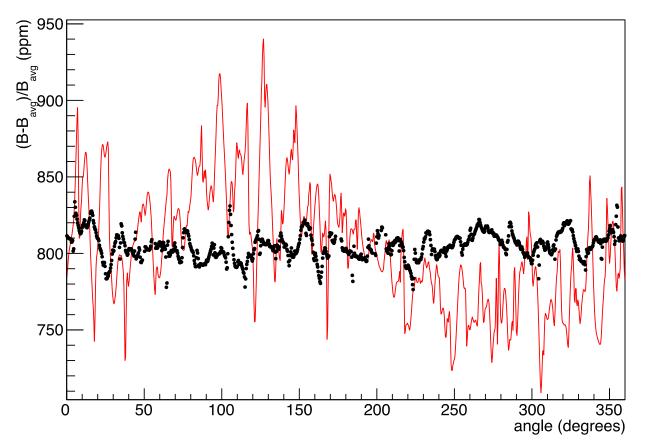

⇒ loop integral over q² of virtual photon(s)

Causality → analyticity → dispersion integral: obtain HVP from its imaginary part only

- Unitarity → Optical Theorem: imaginary part (`cut diagram') = sum over |cut diagram|², i.e. sum over all hadronic cross sections
- Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^{+}\pi^{-}$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$
- Hadronic cross sections from > 100 data sets for e⁺e⁻ → hadrons in > 35 hadronic final states
- Uncertainty of a^{HVP} prediction from statistical & systematic uncertainties of data
- Perturbative QCD only at large energies vs, no modelling of $\sigma_{had}(s)$, maximally data-driven


All put back together at Fermilab!

Not just the same BNL exp with more stats...


Spent over a year shimming the field to be 3x more uniform

- Environmental improvements
 - 3' thick reinforced concrete floor for added stability (3 slabs at BNL)
 - Hall temperature control to < +/- 1C to prevent magnet gap from opening and closing (5C variations at BNL)
- Beam at BNL had a 50% hadronic contamination that momentarily blinded detectors, no hadrons at FNAL –> better gain detector gain stability

Comparison with BNL field

Dipole Vs Azimuth

BNL Typical Scan

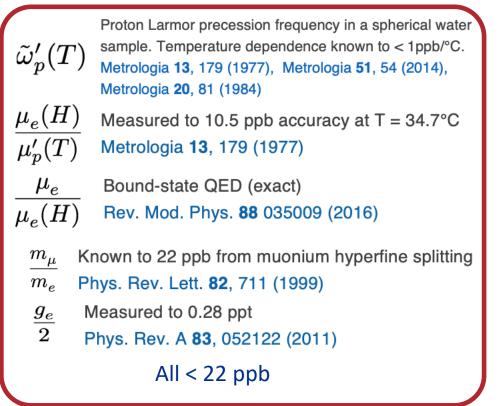
- 39 ppm RMS (dipole)
- 230 ppm peak-topeak

FNAL Rough Shimming

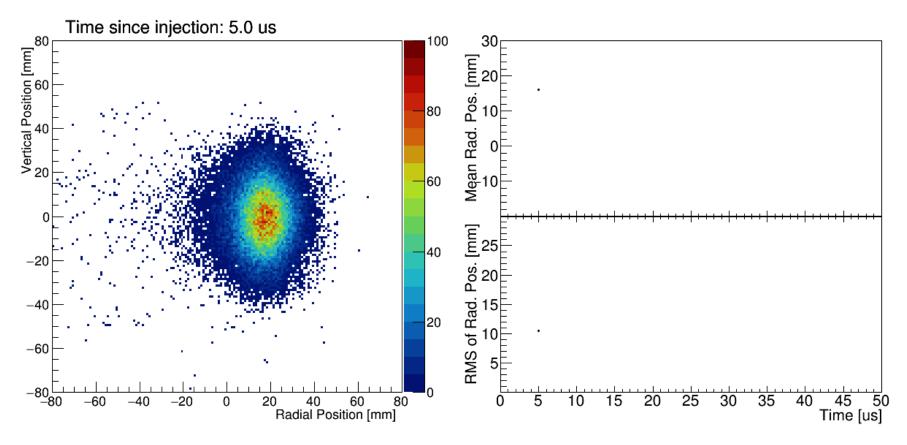
- 10 ppm RMS (dipole)
- 75 ppm peak-to-peal

Not just the same BNL exp with more stats...

- Upgrades to 24 calorimeters arrayed around the ring
 - PbWO4 crystals vs PbSciFi → Cerenkov vs scintillation → better temporal separation of pileup
 - Segmented into 6x9 arrays vs monolithic block \rightarrow spatial separation of pileup
 - − Vertically taller \rightarrow less beam falls of top and bottom \rightarrow less sensitivity to CBO
- Waveform digitizers that sample twice as fast at 800 MHz → better pileup separation
- DAQ capable of recording all events down to ~10 MeV compared to BNL where most events < 800 MeV were tossed → smaller pileup errors
- Two straw tracker stations installed inside vacuum chambers → unprecedented view of beam dynamics → improved knowledge of all systematics arising from beam motion/detector acceptance
- Laser system that can monitor gain at a part in 10-5 \rightarrow smaller gain error
- New kickers center the stored muon beam better → smaller electric field correction

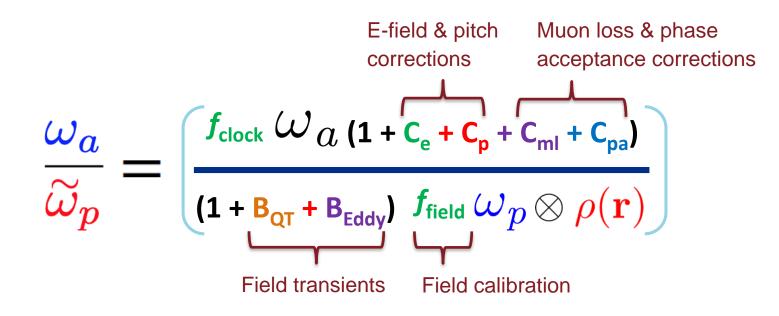

We rely on others for e/m and absolute H₂O calib

$$a_{\mu} = \underbrace{\frac{\omega_a}{\tilde{\omega}_p'(T_r)}}_{\mu_e(H)} \underbrace{\frac{\mu_p'(T_r)}{\mu_e(H)}}_{\mu_e} \frac{\mu_e(H)}{m_e} \frac{m_\mu}{m_e} \frac{g_e}{2}$$


 ω_a : the muon spin precession frequency

 $\tilde{\omega}_p'(T_r)$: precession of protons in water sample mapping the field and weighted by the muon distribution

Goal: 140 ppb = 100 ppb (stat)
① 100 ppb (syst)


Imaging CBO with the trackers

• The *in vacuo* straw trackers give us a much better understanding of beam-related systematic than BNL.

But wait, there's more...

• Every one of these terms has been studied in extraordinary detail. How much?

Systematics (numerator)

Source	Uncertainty
Frequency Standard	1 ppt
Frequency Synthesizers	0.1 ppb
Digitization Frequency	2 ppb
Total Systematic	2 ppb

Data Set	Run-1a	Run-1b	Run-1c	Run-1d
$C_{ m pa}$	-184	-165	-117	-164
Stat. uncertainty	23	20	15	14
Tracker & CBO	73	43	41	44
Phase maps	52	49	35	46
Beam dynamics	27	30	22	45
Total uncertainty	96	74	60	80

$R(\omega_a)$ with detailed s	systema	tics cat	egories	[ppb]
Total systematic uncertainty	65.2	70.5	54.0	48.8
Time randomization	14.8	11.7	9.2	6.9
Time correction	3.9	1.2	1.1	1.0
Gain	12.4	9.4	8.9	4.8
Pileup	39.1	41.7	35.2	30.9
Pileup artificial dead time	3.0	3.0	3.0	3.0
Muon loss	2.2	1.9	5.2	2.4
СВО	42.0	49.5	31.5	35.2
Ad-hoc correction	21.1	21.1	22.1	10.3

*Run 1 ω_{a} data analyzed in four subsets

	1a	1b	1c	1d
C _P (ppb)	176	199	191	166
Statistical uncertainty	<0.1	<0.1	<0.1	<0.1
Tracker alignment/reco.	11.0	12.3	12.0	10.7
Tracker res. & acc. removal	3.3	3.9	3.7	3.0
Azimuthal avg. & calo. acc.	1.0	1.3	2.2	1.1
Amplitude fit	1.2	0.4	1.0	2.9
Quad alignment/voltage	4.4	4.4	4.4	4.4
Systematic uncertainty	12.4	13.7	13.6	12.3

Data Set	Run-1a	Run-1b	Run-1c	Run-1d
C_{ml}	-14	-3	-7	-17
Phase-momentum	2	0	1	3
Form of $l(t)$	2	0	1	1
f_{loss} function	2	1	2	2
Linear sum $(\sigma_{C_{ml}})$	6	2	4	6

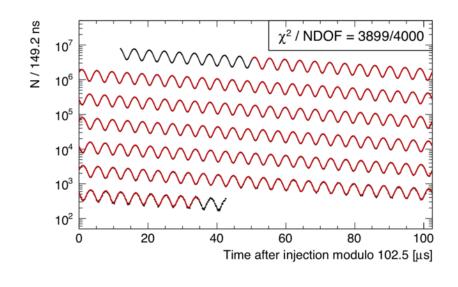
	1a	1b	1c	1d
C _e (ppb)	471	464	534	475
Statistical uncertainty	0.4	0.5	0.4	0.2
Fourier method	8.4	13.4	14.4	3.9
Momentum-time correlation	52	52	52	52
Quad alignment/voltage	6.4	6.4	6.4	6.4
Field index	1.7	1.5	1.7	4.0
Systematic uncertainty	53	54	54	53

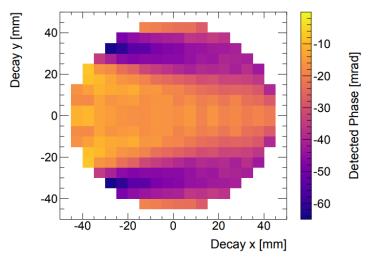
Systematics (denominator)

total -15.0 ppb	81.7 ppb
2 nd 8-pulses	14.0 ppb
radial dependency	4.4 ppb
drift	$10.2\mathrm{ppb}$
repeatability	13.3 ppb
Q3L: fit, position	$1.5\mathrm{ppb}$
frequency extraction $(0.4/1 \text{ms})$	4.6 ppb
skin depth	12.6 ppb
azimuthal shape*	7.6 ppb
run-1 (substructure)	77.4 ppb

Source	Uncertainty (ppb)
Temperature	15 – 28
Configuration	22
Trolley	25
Fixed Probe Production	<1
Fixed Probe Baseline	8
Tracking Drift	22 - 43
Total	43 - 62

DDODE	Cal	ibration Coeffic	ients
PROBE	Value (Hz)	Stat (Hz)	Syst (Hz)
1	90.81	0.38	2.02
2	84.21	0.65	1.18
3	95.02	0.53	2.19
4	86.03	0.25	1.28
5	92.96	0.51	1.10
6	106.24	0.46	1.35
7	116.64	0.96	1.61
8	76.39	0.60	1.21
9	83.52	0.23	1.64
10	24.06	1.39	1.26
11	177.55	0.22	1.99
12	110.85	0.44	1.73
13	122.89	2.08	1.93
14	77.11	0.53	1.88
15	74.82	1.06	1.59
16	20.35	0.44	2.94
17	172.12	1.23	1.96
AVG		0.70	1.70


Quantity	Symbol	Value	Unit
Diamagnetic Shielding T dep	(1/σ)dσ/dT	-10.36(30)	ppb/°C
Bulk Susceptibility	δ_{b}	-1504.6 ± 4.9	ppb
Material Perturbation	δs	15.2 ± 13.3	ppb
Paramagnetic Impurities	δ _p	0 ± 2	ppb
Radiation Damping	δ _{RD}	0 ± 3	ppb
Proton Dipolar Fields	δ _d	0 ± 2.3	ppb


Run-1 Estimate: $B_k = -27.4 \pm 37 \text{ ppb}$

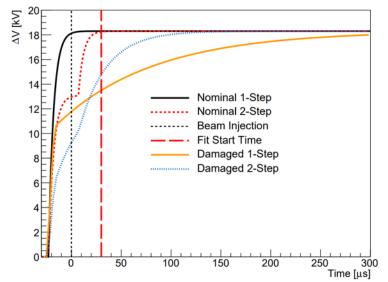
	correction [ppb]				uncertai	nty [ppb]		
Dataset	1a	1b	1c	1d	1a	1b	1c	1d
1. Tracker and calo effects	-	-	-	-	9.2	13.3	15.6	19.7
2. COD effects	1.6	1.5	1.7	1.4	5.2	4.7	5.2	4.9
3. In-fill time effects	-1.9	-2.3	-1.2	-4.1	-	-	-	-
Total	-0.3	-0.8	0.5	-2.7	10.6	14.1	16.5	20.3

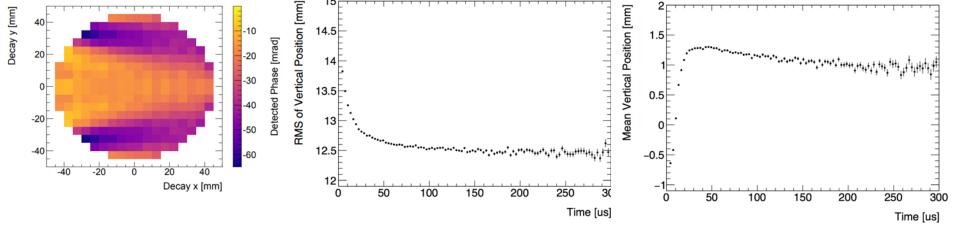
C_{PA} – Phase acceptance error

 $f(t) \simeq N_0 e^{-\lambda t} [1 + A\cos(\omega_a t + \phi)]$

But what if the phase of the muon population changes in time $\phi(t)$?

$$cos(\omega_a t + \phi(t)) = cos(\omega_a t + \phi_0 + \phi' t + \dots)$$
$$= cos((\omega_a + \phi')t + \phi_0 + \dots)$$


The extracted ω_{a} is shifted by ϕ^{\prime}


- The decay positrons we detect come from muons that have a particular phase
- That phase depends on muon decay position (x,y) and energy E
- Not a big issue if the muon distribution remains stable in the gap

C_{PA} – Phase acceptance error

- Equipment failure led beam instability
- HV resistors died → changing E-field → beam vertical mean and width changed
- -158 ppb correction with a 75 ppb uncertainty in Run 1
- Fixed by Run 2 removing the majority of this correction and uncertainty

With better B_q maps, resistors fixed, and a few other improvements... on track for the 100 ppb systematic goal for Run 2 and beyond