ATLAS and topology-based searches

What is the role of topology-based analyses in ATLAS?

Not much developed in the past (one notable exception)

Most analyses developed on wide variety of benchmarks in certain models, like mSUGRA / GMSB ("SU4" is such a benchmark point) Tried to cover most (all?) mSUGRA phenomenology with benchmark variety

+ pMSSM, SO(10), AMSB, RPV, split-SUSY,... Masses and decay chains, M_{T2} , M_{CT} Non-SUSY BSM searches: usually model-inspired

Starting to fit in topology-based approaches (rest of this talk)
→Generalizing the searches
→Presentation and publication of results
→(Characterizing a signal)

Focus a bit on SUSY searches in ATLAS

It should be noted that also if we use mSUGRA for sensitivity studies, our search sensitivity is wider than such a model, and NOT particularly mSUGRA-tuned

See for example Conley, Gainer, Hewett, Le, Rizzo arXiv:1009.2539 and Jamie Gainer's talk in this workshop

Number of analyses	Flat, 1 fb ⁻¹	Flat, 10 fb ⁻¹
0	0.56754	0.36796
1	1.3458	0.98841
2	3.396	2.5141
3	13.175	10.635
4	22.014	18.455
5	9.5512	10.3
6	15.227	16.929
7	20.081	17.697
8	7.6394	11.75
9	3.9205	6.3569
10	2.0825	2.7943
11	1.0013	1.2116

pMSSM 19 parameters, flat prior

Masses up to 1 TeV

Find 99.6% of pMSSM models

Find 98% in 2 or more analyses

The cuts are also not particularly tuned for a specific region of parameter space.

Nevertheless, this does not mean we can not do better:
What's up with the pMSSM models we miss?
What further new physics might we miss?
It helps to think of topologies to extract the essential features and see where we can improve (strategy, selection cuts, trigger)

Then why so often produce sensitivity contours in mSUGRA/GMSB?

→ The key phrase is "Reduction of Number of Dimensions"

The MSSM has too many parameters, the NMSSM even more so... The pMSSM still has too many

mSUGRA / GMSB is convenient. For non-SUSY searches, the same holds for other models \rightarrow We will also keep publishing interpretations in models

But we also want to move beyond: We are considering: pMSSM with further assumptions topologies (and often these are almost identical!) Topology-based searches in ATLAS initiated by Claus Horn (SLAC)

Topologies as "eigenmodes" of squark/gluino decays

Legenda: q,g : squark, gluino chi2: neuralino2 or chargino1 I : slepton chi1: invisible LSP chi2 → chi1 via emission of W/Z in mode B

Eigenmode Coverage in mSUGRA

All plots for tan β =10, μ >0 and 500 evts/point.

Follow Up 9

Long Symmetric Modes

Claus Horn: SUSY Eigenmodes

Other Modes

mixed boson-lepton mode

all (A+B+C+bb+cc+bc) modes

Claus Horn: SUSY Eigenmodes

Follow Up 11

Searches largely organized according to object and signature

Object: electron, muon, tau, photon, jet, b-jet, MET, displaced vertex, CHAMP,...

Signatures: jets + MET 1 lepton + jets + MET di-leptons: OS + jets/MET (/ = AND/OR) SS + jets/MET inclusive SS tri-leptons + jets/MET (includes >3 leptons) photon + jets/MET di-photons + jets/met photon + lepton tau(s) + jets + MET b-jets + MET (non-exhaustive list...) Z + METmulti-jets (no MET) lepton + jets (no MET) displaced vertex + jet di-jet (resonant, non-resonant) di-lepton (resonant), lepton + MET,

Discuss a number of signatures and see where topologies can help

Jets + MET (no leptons) 1 lepton + jets + MET Multileptons + MET B-jets + MET

And I will end with general remarks and questions to you...

SUSY searches in jets + MET channel (with lepton veto) ATLAS@ICHEP 2010

And after selection cuts:

ICHEP 2010: appetizer of what is to come!

Just distributions, no interpretation. Not optimal \rightarrow theory community will interprete with PGS You should not need PGS to interprete our results! The actual ATLAS simulation is MUCH more complex than PGS Data and MC agree with each other through hard labor on MC...

Challenges for the paper on 2010 data set:

background estimations and systematics without MC \rightarrow data-driven methods need statistics, starts to be possible now

model-independent sensitivity

interpretation and presentation

3 "topology-motivated" grids for 0-lepton channel

A)

Assume other gauginos heavy

B) $\widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}_1^0$ In a grid of m(gluino) vs m(chi0), assuming other masses high

 $q \to q \widetilde{\chi}_1^0$ In a grid of m(squark) vs m(chi0), assuming other masses high

B en C good for compressed spectra: tune cuts & generalize the search

Use these grids also for interpretation

And idem for the two other grids: m(sq) vs m(gl), m(sq) vs m(chi0)

One lepton + jets + MET

$$\begin{split} \widetilde{g} &\to q \overline{q} \, \widetilde{\chi}_2^0 \qquad \widetilde{\chi}_2^0 \to (Z^{(*)} / h) \, \widetilde{\chi}_1^0 \qquad \widetilde{\chi}_2^0 \to \widetilde{l} \, l \to l l \widetilde{\chi}_1^0 \\ \widetilde{g} &\to q \overline{q}' \, \widetilde{\chi}_1^{\pm} \qquad \widetilde{\chi}_1^{\pm} \to W^{(*)} \, \widetilde{\chi}_1^0 \qquad \widetilde{\chi}_1^{\pm} \to \widetilde{l} \, v \to l \, v \widetilde{\chi}_1^0 \end{split}$$

$$\begin{split} \widetilde{q} &
ightarrow q \widetilde{\chi}_2^0 \ + ext{ similar decays } \\ \widetilde{q} &
ightarrow q' \widetilde{\chi}_1^{\pm} \end{split}$$

A grid to tackle this:

 $\begin{array}{l} M(sq) - M(chi2/chi+-) - M(chi1) \\ M(sq) - M(chi2/chi+-) - M(sl) - M(chi1) \end{array}$

Assuming gluino very heavy

 $\begin{array}{l} M(gl) - M(chi2/chi+-) - M(chi1) \\ M(gl) - M(chi2/chi+-) - M(sl) - M(chi1) \end{array}$

Assuming squark very heavy

And assuming chi1 is ~bino, chi2 is ~wino, M(chi2)=M(chi+-)

Leptonic W/Z decays: lepton(s) + jets + MET signature Hadronic W/Z decays actually belong to jets + MET (0-lepton) signature

Di-leptons

More complicated!

Partly covered by same grid as 1 lepton But possibly more topologies $\widetilde{\chi}_2^0 \rightarrow \widetilde{l} \, l \rightarrow l l \widetilde{\chi}_1^0$ Investigating, help from this workshop? Especially interested in topologies for same-charge di-leptons

 $\widetilde{\chi}_2^0 \rightarrow (Z^{(*)}/h)\widetilde{\chi}_1^0$

Tri-leptons

EW-ino modules are a start, but not studied yet

Searches with b-tagged jets

Strong production of b, t partners: $\tilde{b}\overline{\tilde{b}}, \tilde{t}\overline{\tilde{t}}$ Or gluino production: $\tilde{g} \rightarrow t\tilde{t}$ $\tilde{g} \rightarrow b\tilde{b}$

A number of decay modes are possible, depending on masses other sparticles:

$$\begin{aligned} &\widetilde{b} \to b \widetilde{\chi}_1^0 \quad \widetilde{b} \to t \widetilde{\chi}_1^{\pm} \\ &\widetilde{t} \to (t/c) \widetilde{\chi}_1^0 \quad \widetilde{t} \to b \widetilde{\chi}_1^{\pm}, b l \widetilde{v} \end{aligned}$$

Simplified models:

Parameters: M(gluino) - M(stop)/M(sbottom) - M(chi0)

Heavy flavor simplified models (1)

- Signature of 0-leptons, jets and MET energy with heavy flavor
- Search everywhere
 - What kinematics are expected
- Analysis strategy
 - What kinematics are we sensitive to
 - Specific challenging regions of kinematics
 - Trigger
- Use simplified models to help understand basic features

Preliminary analysis of what simplified model can do for b-jet SUSY search

Heavy flavor simplified models (2)

- Note that parameters are masses; cross-sections and branching ratios can be achieved by weighting events
- Note that this is a subset of the simplified model case study in e.g. arXiv:0810.3921 which includes wider scope to constrain new physics (e.g. lepton count)

Heavy flavor simplified models (3)

- Even basic rules (with heavy flavor restriction) give rise to large set of topologies
- Here: 100% branching ratios to b/t (light branching ratio has wider scope)

"Look in all places": understand sensitivity for all dominant signatures

Gluino production: 4b+MET

- 4 b-jet + MET signature
- $\Delta M(\sim g, \chi^0)$ determines jet and LSP kinematics
- Gluino mass affects mainly cross-section, not sensitivity

Gluino production: 4b+MET

(b-)jet kinematics

All 4 leading jets sensitive to mass difference

Expect b-jets with low pT

Gluino production: 4b+MET

Similar mass difference dependence follows for MET and effective mass

Little less pronounced for MET due to the 2b-jets

Squark production: 2b+MET

(consider only sbottom here)

- 2 b-jet signature
 - (2 stop prod: more complicated final state is possible -> softer b-jets)
- $\Delta M(\sim b, \chi^0)$ determines jet and MET kinematics
 - Squark (partner) mass determines overall normalization
- Expect two (hard) b-jets from direct decay + soft additional light jets
- Additional jets not sensitive to mass difference

Squark production: 2b+MET

<u>(b-)jet kinematics</u>

Two (b-)jets sensitive to mass difference

Additional light jets not sensitive to mass difference (see 4^{th} leading jet p_T)

Low overall jet multiplicity: largely <u>unaffected</u> by mass difference

Squark production: 2b+MET

Similar dependence on mass difference

Gluino production:2b2t+MET

- 4 b-jet signature
- Top production creates more complicated final state
 - Softer b-jets
 - Higher light jet multiplicity
- $\Delta M(\sim g, \chi^0)$ still main parameter for jet and MET kinematics
- Might expect two hard and two softer b-jets

Gluino production: 4t+MET

- 4 b-jet + MET signature
- ΔM(~g, χ⁰) determines available jet and LSP kinematics
- Moderated by top decay -> expect less sensitivity to mass difference
 - Softer b-jets
 - High (light) jet multiplicity (low pT)
- Requires rather large gluino partner mass

Summary of "2b-topologies"

- Two b-jets
- Low jet multiplicity (~independent of ΔM)
- Mass difference governs (b-)jet kinematics
 - 2 hard b-jets + high MET
 - 2 soft b-jets + low MET

- Two b-jets
- Higher (light) jet multiplicity
- Mass difference governs (b-)jet kinematics
 - 2 hard b-jets + high MET + softer light jets
 - 2 soft b-jets + low MET+ softer light jets

Summary of "4b-topologies"

- Many (4) b-jets: all sensitive to ΔM
- Low light jet multiplicity
- Mass difference governs (b-)jet kinematics
 - 4 harder b-jets + high MET
 - 4 soft b-jets + low MET
- Four b-jets
- 2 b-jets less sensitive to ΔM
- Higher (light) jet multiplicity
- Mass difference governs (b-)jet kinematics
 - Harder b-jets + high MET
 - Less effect on light jets
- Four "medium-hard" b-jets
- b-jet kinematics less sensitive to ΔM
- High light jet multiplicity

Search strategy

- Simplified models allows to see that qualitatively very different topologies need to be covered
 - Different number of b-jets
 - Jet p_T and MET spectrum varies over large range
- Trigger optimization can benefit
- Backgrounds will be very different
- Hard to use one analysis with (good) sensitivity in all signatures
 - b-tagging optimization, missing E_T and jet kinematic selection
 - A good discriminating variable in one case can be useless in another e.g. Pt2ratio, M_{eff} (see next slide)
- Try to design search strategy based on the qualitative features observed
 - Understand "overlaps" in topologies

Example of analysis strategy

Case 1: 2 high pT b-jets + large MET

- Can cover topologies
 - B->b+LSP orT->t+LSP w/ large ΔM
 - G->tb+LSP large ΔM
- Possibly low jet multiplicity
- Trigger: MET+jets, b-jets

Case 3: 4 high pT b-jets + large MET

- Generally 4b signatures with high ΔM
- Can cover topologies
 - Gluino->4b and 2t2b
- High b-tag multiplicity (>=3?, 4?)
- Small backgrounds?
- Trigger: b-jet, MET+jets, multijets

Case 2: 2 low pT b-jets + low MET

- Extends into cases with low pT 3rd, 4th b-jet
- Can cover topologies (generally low ΔM)
 - B->b+LSP or T->t+LSP w/ small
 ΔM
 - G->2b/2t2b+LSP (small Δ M) and G->2t+LSP
- Low pT b-tag optimization
- Event variables
- Trigger: b-jets,MET+jets

Case 4: 4 low pT b-jets + small MET

- Generally 4b signatures with low ΔM
- Can cover topologies
 - Gluino->4b, 2t2b, 4t
- High b-tag multiplicity (>=3?, 4?)
- Small backgrounds?
- Trigger: b-jets, MET+jets

Some experimental constraints in optimizations:

Leptons: minimum p_T defined by trigger acceptance of tracking detectors fake rates depend on p_T , η , busy-ness of event

Jets: if no lepton to trigger event: single jet / MET / multi-jet / jet+MET triggers define the minimum p_T threshold jet finding efficiency depends on p_T , η ; drops at low p_T jet energy scale calibration: more difficult at low p_T b-tagging efficiencies: depend on p_T , η rely on understanding tracking: improving in time

The ATLAS detector simulation treats this correctly + pile-up, noise, changing beam-spot, changing detector configurations,... PGS does not

Questions/Requests to you:

-We need a map between signatures and topologies

- -Topologies for multi-leptons, in particular same-charge di-leptons
- -Topologies that predict "weird" signatures that we otherwise might miss
- -Are taus just like other leptons, or do they deserve special topologies?
- -Non-SUSY BSM topologies without MET (actually also for RPV SUSY)
- -Your continuing input on how to present results is welcome. Especially if the number of free parameters > 3 Especially for signatures with a complicated map to topologies