SUSY related models

Mihoko Nojiri

2010年9月24日金曜日

in Collider Physics

- Models with Lightest stable particle --connection with dark matter
- Two models SUSY vs "Same spin partners"
 - Spin dependence
 - Change in dominant channel
- Purpose of this talk: How to look into decay patterns, interactions and masses

Topics

1) mass ordering, mass determination of strongly interacting partners

2)spin dependence in 2 jet mode for "same spin partner model"

3) M_{CT2} vs M_{T2} in 2 lepton channel

4)Reconstructing masss -- ISR removal

1) Decay pattern of the SUSY like model

Checking mass ordering

- Inclusive MT2 distribution for Mgl~600 GeV
 - divide events into two using Lund distance and calculate MT2 from two visible system
- Selection: Events at least 2 jets with pT>200GeV
- msq<mgl: large branch sharp edge. The mode with 2 high pT jet stands!

2) 2 jet mode in the same spin partner models

- Base line model
 - SUSY: |particle spin -partner spin|=0.5
 - Little Higgs model and Universal Extra dimension model (particle spin)=(partner spin)
- Forget about mass constraint of the models (SUSY-MSSM, UED -split type)
- Signals are the "Same" in the first level 'jets and missing ET
- There are actually big difference which can be seen in early stage..

A parameter

- QCD section G_(p): 700 GeV, Q_{(p)LR} :600GeV
- Weak sector W_(p):300 GeV A_(p):100 GeV
- cross section $\sigma(G_{(p)}G_{(p)}) << \sigma(G_{(p)}Q_{(p)}), \sigma(Q_{(p)}Q_{(p)})$ Madgraph --Jing Nojiri in progress

	$G_{(p)}G_{(p)}$	Q(p)RG(p) including antiparticle	Q(pR)Q(pR) (including antiparticle)	$\begin{array}{c} Q_{(pR)}Q_{(pR)} \\ (particle \ only \) \end{array}$	URUR(gluon exchnage only)
This model	0.6pb	1.9pb	5.8pb	5pb	0.7pb
A:200GeV			2.7pb	2.2pb	

dominant in SUSY

The difference in spin

- SUSY: scalar partner decays spherically
- production and decay processes are chiral
 - 2jet + missing for Q_RQ_R production
- The lightest vector partners from decay is h~0 if m_Q>>m_A. The final state q goes in the direction of parent spin of Q.
- Q_R polarization depends on m_A strongly though T channel exchange of gauge boson.

No spin (Madgraph 2 by 2 →pythia/bridge)

etmiss/xmeff

14

1200

1600

80

0

Madgraph 2 by 4 (and Herwig)

2010年9月24日金曜日

Lessons and some info

- No "phase space decay" for leading objects :Nonpolarized decay fails to reproduce physics processes even in such simple case.
- "Consistent treatment" Production in T channel and decay are correlated.
 - Madgraph (till final decay) works. Herwig (though I have not tried for the case) must be fine.
 - Madgraph (up to pp→ Q(p) Q(p)) → Pythia or Bridge fails to reproduce the correct distribution.
 (I am not sure if I treated Bridge correctly.)

3)a new kinematical object MCT2 VS MT2 with upstream momentum

Mass determination

Using cascade in one side: invariant mass distribution

Using both of the decay chain : inv under z boost M_{T2} inv under contra boost M_{CT2}

New variable help to determine chargino mass

Upstream momentum dependence of M_{CT2} and M_{T2} (ISR)

chargino →sneutrino

- 2 leptons +missing +upstream activities
- upstream momentum dependence of M_{T2} and M_{CT2} is opposite
 - M_{CT2} has stronger dependence on δ
- chargino and sneutrino masses can be determined by using

Y:CT2(x400/dtb200)lB:CT2(x400/dtb100)lMagenta:CT2(xs/dtb50),err BLK:T2(x0/dtb200)lG:T2(x0ldtb50),err15

4) The other source of jets : ISR

Alwall, Hiramatsu, Nojiri, Shimizu (2009)

- >> PT (3 body gluon partner decay)
- >> other cascade decay

2010年9月24日金曜日

Removing ISR in inclusive M_{T2}

