New Physics Signal:

Simplest Topology and Largest Rate

Tao Han * University of Wisconsin – Madison

Topologies for Early LHC Searches SLAC, Sept. 22, 2010

*with Ian Lewis, Zhen Liu, to appear.

It IS the LHC era !

ATLAS *W* re-discovery:

W Selection

- Tight electron.
- Muon with $p_T > 20 \text{ GeV}.$
- Muon isolation

 $\sum p_T^{trk}/p_T^{\mu} < 0.2$ $\Delta R < 0.4$

Entries / 5 GeV

- $E_T > 25$ GeV.
- $m_T > 40 \text{ GeV}.$

$$m_T = \sqrt{2p_T^\ell p_T^\nu (1 - \cos(\Delta \phi_{\ell,\nu}))}$$

ATLAS Z re-discovery:

- **Z** Selection
- Two oppositely charged leptons (e/μ).
- Same lepton selection as W analysis except medium electrons.
- Invariant mass $66 < m_Z < 116$ GeV.

CMS W+jets and top events

CDF W+jets and top

CDF W+jets and top

LHC top studies catching up !

CDF W+jets and top

LHC top studies catching up !

LHC achieved the first crucial step: The Standard Model rediscovered !

CMS 1-jet in different rapidities:

CMS 1-jet in different rapidities:

D0 1-jet in rapidity ranges:

LHC QCD results have gone BEYOND the Tevatron, entering the discovery era !

... And have gone on to the physics BSM :

400 GeV < $M_{q*}(jj)$ < 1.26 TeV excluded.

... And have gone on to the physics BSM :

400 GeV < $M_{q*}(jj)$ < 1.26 TeV excluded.

First BSM physics search beyond the Tevatron reach !

• Strong interactions: $g_s^2 = 4\pi\alpha_s \sim 1$, or $\lambda_y \sim 1$.

• Strong interactions: $g_s^2 = 4\pi\alpha_s \sim 1$, or $\lambda_y \sim 1$.

• High partonic luminosity: u_v, d_v, g .

• Strong interactions: $g_s^2 = 4\pi\alpha_s \sim 1$, or $\lambda_y \sim 1$.

• High partonic luminosity: u_v, d_v, g .

TeV Scale New Physics with Simplest Topology:

• Strong interactions: $g_s^2 = 4\pi\alpha_s \sim 1$, or $\lambda_y \sim 1$.

• High partonic luminosity: u_v, d_v, g .

TeV Scale New Physics with Simplest Topology:

• Single Resonance Production, with simple decays: $R \rightarrow jj, \ \ell^+\ell^-, \ \ell j, \ \dots$

• Strong interactions: $g_s^2 = 4\pi\alpha_s \sim 1$, or $\lambda_y \sim 1$.

• High partonic luminosity: u_v, d_v, g .

TeV Scale New Physics with Simplest Topology:

• Single Resonance Production, with simple decays: $R \to jj, \ \ell^+\ell^-, \ \ell j, \ \ldots$

• Strong interactions: $g_s^2 = 4\pi\alpha_s \sim 1$, or $\lambda_y \sim 1$.

• High partonic luminosity: u_v, d_v, g .

TeV Scale New Physics with Simplest Topology:

• Single Resonance Production, with simple decays: $R \to jj, \ \ell^+\ell^-, \ \ell j, \ \dots$

Plenty of Examples (in well-motivated theories):

• color anti-triplet scalars: \tilde{q} in *R*-parity violating SUSY; Di-quarks

• Strong interactions: $g_s^2 = 4\pi\alpha_s \sim 1$, or $\lambda_y \sim 1$.

• High partonic luminosity: u_v, d_v, g .

TeV Scale New Physics with Simplest Topology:

• Single Resonance Production, with simple decays: $R \to jj, \ \ell^+\ell^-, \ \ell j, \ \dots$

- color anti-triplet scalars: \tilde{q} in *R*-parity violating SUSY; Di-quarks
- color triplet/sextet fermions: q^* excited quarks; q_{KK}

• Strong interactions: $g_s^2 = 4\pi\alpha_s \sim 1$, or $\lambda_y \sim 1$.

• High partonic luminosity: u_v, d_v, g .

TeV Scale New Physics with Simplest Topology:

• Single Resonance Production, with simple decays: $R \to jj, \ \ell^+\ell^-, \ \ell j, \ \dots$

- color anti-triplet scalars: \tilde{q} in *R*-parity violating SUSY; Di-quarks
- color triplet/sextet fermions: q^* excited quarks; q_{KK}
- color sextet scalar: Δ_{qq} diquark-Higgs

• Strong interactions: $g_s^2 = 4\pi\alpha_s \sim 1$, or $\lambda_y \sim 1$.

• High partonic luminosity: u_v, d_v, g .

TeV Scale New Physics with Simplest Topology:

• Single Resonance Production, with simple decays: $R \to jj, \ \ell^+\ell^-, \ \ell j, \ \dots$

- color anti-triplet scalars: \tilde{q} in *R*-parity violating SUSY; Di-quarks
- color triplet/sextet fermions: q^* excited quarks; q_{KK}
- color sextet scalar: Δ_{qq} diquark-Higgs
- color octet scalar/vector: π_{TC} , ρ_{TC} , S_2 , g_{KK} , axigluon ...

"Super-models" proposed:

C.W. Bauer, Z. Ligeti, M Schmaltz, J. Thaler, D.G.E. Walker arXiv:0909.5213 [hep-ph]

"Super-models" proposed:

C.W. Bauer, Z. Ligeti, M Schmaltz, J. Thaler, D.G.E. Walker arXiv:0909.5213 [hep-ph]

that give large, easy, early signals:

But,

Like any other models, these Super-Models are not without controversy ...

But,

Like any other models, these Super-Models are not without controversy ...

C. Quigg: arXiv:1009.3742 [hep-ph]

"... Among many possibilities, I regard the discovery of a diquark resonance [Bauer:2009cc] (for which the pp collisions of the LHC offer higher sensitivity than the $\bar{p}p$ collisions of the Tevatron) as not so plausible, but the early observation of a fourth-generation quark [soni,...] as not so implausible. "

But,

Like any other models, these Super-Models are not without controversy ...

C. Quigg: arXiv:1009.3742 [hep-ph]

"... Among many possibilities, I regard the discovery of a diquark resonance [Bauer:2009cc] (for which the pp collisions of the LHC offer higher sensitivity than the $\bar{p}p$ collisions of the Tevatron) as not so plausible, but the early observation of a fourth-generation quark [soni,...] as not so implausible. "

We take an "anti-model" measure *

*TH, Ian Lewis, Zhen Liu, to appear.

"Simplified Models" Quantum numbers $(SU_3, SU_2)_{Q_e}^J$

Left – handed doublet Right – handed singlet Right – handed singlet vector

"Simplified Models" Quantum numbers $(SU_3, SU_2)_{Q_e}^J$

Q	$(3,2)^{1/2}_{2/3,-1/3}$
U	$(3,1)^{1/2}_{2/3}$
D	$(3,1)^{1/2}_{-1/3}$
A	$(8,1)_0^1$

Left – handed doublet

Right – handed singlet

Right – handed singlet

vector

initial state	J	SU_C (3)	$SU(2)_L$	$U(1)_Y$	$ Q_e $	B
QQ	0	${f \overline{3}}\oplus {f 6}$	$1\oplus3$	$\frac{1}{3}$	$\frac{4}{3}, \frac{2}{3}, \frac{1}{3}$	$\frac{2}{3}$
QU	1	${f \overline{3}}\oplus{f 6}$	2	<u>5</u> 6	$\frac{4}{3},\frac{1}{3}$	$\frac{2}{3}$
QD	1	${f \overline{3}}\oplus{f 6}$	2	$-\frac{1}{6}$	$\frac{2}{3'3}$	$\frac{2}{3}$
UU	0	${f \overline{3}}\oplus{f 6}$	1	$\frac{4}{3}$	$\frac{4}{3}$	$\frac{2}{3}$
DD	0	$\overline{f 3}\oplus f 6$	1	$\frac{2}{3}$	$\frac{2}{3}$	$\frac{2}{3}$
UD	0	$\overline{f 3}\oplus f 6$	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{2}{3}$
QA	$\frac{1}{2}, \frac{3}{2}$	$old 3 \oplus ar{f 6} \oplus 15$	2	$\frac{1}{6}$	$\frac{2}{3},\frac{1}{3}$	$\frac{1}{3}$
UA	$\frac{1}{2}, \frac{3}{2}$	$old 3 \oplus ar{f 6} \oplus old 5$	1	<u>2</u> 3	<u>2</u> 3	$\frac{1}{3}$
DA	$\frac{1}{2}, \frac{3}{2}$	$old 3 \oplus ar{f 6} \oplus old 5$	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
AA	0, 1, 2	$1 \oplus 8 \oplus 8 \oplus 10 \oplus ar{10} \oplus 27$	1	0	0	0
$Q\bar{Q}$	1	$oldsymbol{1} \oplus oldsymbol{8}$	$1\oplus 3$	0	1,0	0
$Qar{U}$	0	${f 1}\oplus {f 8}$	2	$-\frac{1}{2}$	1,0	0
$Q\bar{D}$	0	$oldsymbol{1} \oplus oldsymbol{8}$	2	$\frac{1}{2}$	1,0	0
$Uar{U},\ Dar{D}$	1	$1 \oplus 8$	1	Ō	0	0
$U\bar{D}$	1	$1 \oplus 8$	1	1	1	0

Gauge-invariant interactions: (1). $\underline{3 \otimes 3}$

(1). $\underline{3\otimes 3}$

There are 7 (EW) states:

 $egin{aligned} \Phi &\sim (ar{3} \oplus 6,3)^0_{1/3}, \quad \Phi_{ ext{q}} &\sim (ar{3} \oplus 6,1)^0_{ ext{q}} \quad (ext{q}=1/3, \ -2/3, \ 4/3) \ V^\mu_U &\sim (ar{3} \oplus 6,2)^1_{4/3,1/3} \quad V^\mu_{ ext{D}} &\sim (ar{3} \oplus 6,2)^1_{1/3,-2/3}. \end{aligned}$

(1). $\underline{3\otimes 3}$

There are 7 (EW) states:

 $egin{aligned} \Phi &\sim (ar{3} \oplus 6,3)^0_{1/3}, \quad \Phi_{ ext{q}} &\sim (ar{3} \oplus 6,1)^0_{ ext{q}} \quad (ext{q}=1/3, \ -2/3, \ 4/3) \ V^\mu_U &\sim (ar{3} \oplus 6,2)^1_{4/3,1/3} \quad V^\mu_{ ext{D}} &\sim (ar{3} \oplus 6,2)^1_{1/3,-2/3}. \end{aligned}$

Gauge-invariant operators:

$$\mathcal{L}_{qqD} \sim \bar{K}_{j}^{ab} \left[y_{\alpha\beta} \bar{Q}_{\alpha a} i\sigma_{2} \Phi^{j} Q_{\beta b}^{C} + \kappa_{\alpha\beta} \Phi_{1/3}^{j} \bar{Q}_{\alpha a} i\sigma_{2} Q_{\beta b}^{C} \right. \\ \left. + \lambda_{\alpha\beta}^{1/3} \Phi_{1/3}^{j} \bar{U}_{\alpha a} D_{\beta b}^{C} + \lambda_{\alpha\beta}^{2/3} \Phi_{-2/3}^{j} \bar{D}_{\alpha a} D_{\beta b}^{C} + \lambda_{\alpha\beta}^{4/3} \Phi_{4/3}^{j} \bar{U}_{\alpha a} U_{\beta b}^{C} \right. \\ \left. + \lambda_{\alpha\beta}^{U} \bar{U}_{\alpha a} V_{U}^{j\dagger^{\mu}} \gamma_{\mu} Q_{\beta b}^{C} + \lambda_{\alpha\beta}^{D} \bar{D}_{\alpha a} V_{D}^{j\dagger^{\mu}} \gamma_{\mu} Q_{\beta b}^{C} \right] + \text{h.c.},$$

(1). $\underline{3\otimes 3}$

There are 7 (EW) states:

$$egin{aligned} \Phi &\sim (ar{3} \oplus 6,3)^0_{1/3}, \quad \Phi_{ ext{q}} &\sim (ar{3} \oplus 6,1)^0_{ ext{q}} \quad (ext{q}=1/3, \; -2/3, \; 4/3) \ V^\mu_U &\sim (ar{3} \oplus 6,2)^1_{4/3,1/3} \quad V^\mu_{ ext{D}} &\sim (ar{3} \oplus 6,2)^1_{1/3,-2/3}. \end{aligned}$$

Gauge-invariant operators:

$$\mathcal{L}_{qqD} \sim \bar{K}_{j}^{ab} \left[y_{\alpha\beta} \bar{Q}_{\alpha a} i\sigma_{2} \Phi^{j} Q_{\beta b}^{C} + \kappa_{\alpha\beta} \Phi_{1/3}^{j} \bar{Q}_{\alpha a} i\sigma_{2} Q_{\beta b}^{C} \right. \\ \left. + \lambda_{\alpha\beta}^{1/3} \Phi_{1/3}^{j} \bar{U}_{\alpha a} D_{\beta b}^{C} + \lambda_{\alpha\beta}^{2/3} \Phi_{-2/3}^{j} \bar{D}_{\alpha a} D_{\beta b}^{C} + \lambda_{\alpha\beta}^{4/3} \Phi_{4/3}^{j} \bar{U}_{\alpha a} U_{\beta b}^{C} \right. \\ \left. + \lambda_{\alpha\beta}^{U} \bar{U}_{\alpha a} V_{U}^{j\dagger\mu} \gamma_{\mu} Q_{\beta b}^{C} + \lambda_{\alpha\beta}^{D} \bar{D}_{\alpha a} V_{D}^{j\dagger\mu} \gamma_{\mu} Q_{\beta b}^{C} \right] + \text{h.c.},$$

After EWSB: $E_{(\mu)}^{j}, U_{(\mu)}^{j}, D_{(\mu)}^{j}$ (color $j = \overline{3}, 6$ and charges 4/3, -2/3, 1/3)

$$\mathcal{L}_{qqD} = \bar{K}_{j}^{ab} \left[\lambda_{\alpha\beta}^{E} E^{j} \ \bar{u}_{\alpha a} P_{L} C \bar{u}_{\beta b}^{T} + \lambda_{\alpha\beta}^{U} U^{j} \ \bar{d}_{\alpha a} P_{L} C \bar{d}_{\beta b}^{T} + \lambda_{\alpha\beta}^{D} D^{j} \ \bar{u}_{\alpha a} P_{L} C \bar{d}_{\beta b}^{T} \right. \\ \left. + \lambda_{\alpha\beta}^{E'} E^{j\mu} \ \bar{u}_{\alpha a} \gamma_{\mu} C P_{R} \bar{u}_{\beta b}^{T} + \lambda_{\alpha\beta}^{U'} U^{j\mu} \ \bar{d}_{\alpha a} \gamma_{\mu} C P_{R} \bar{d}_{\beta b}^{T} \right. \\ \left. + \lambda_{\alpha\beta}^{D'} D^{j\mu} (\bar{u}_{\alpha a} \gamma_{\mu} C P_{R} \bar{d}_{\beta b}^{T} + \bar{d}_{\alpha a} \gamma_{\mu} C P_{R} \bar{u}_{\beta b}^{T}) \right] + \text{h.c.}$$

(1). $\underline{3\otimes 3}$

There are 7 (EW) states:

$$egin{aligned} \Phi &\sim (ar{3} \oplus 6,3)^0_{1/3}, \quad \Phi_{ ext{q}} &\sim (ar{3} \oplus 6,1)^0_{ ext{q}} \quad (ext{q}=1/3, \; -2/3, \; 4/3) \ V^\mu_U &\sim (ar{3} \oplus 6,2)^1_{4/3,1/3} \quad V^\mu_{ ext{D}} &\sim (ar{3} \oplus 6,2)^1_{1/3,-2/3}. \end{aligned}$$

Gauge-invariant operators:

$$\mathcal{L}_{qqD} \sim \bar{K}_{j}^{ab} \left[y_{\alpha\beta} \bar{Q}_{\alpha a} i\sigma_{2} \Phi^{j} Q_{\beta b}^{C} + \kappa_{\alpha\beta} \Phi_{1/3}^{j} \bar{Q}_{\alpha a} i\sigma_{2} Q_{\beta b}^{C} \right. \\ \left. + \lambda_{\alpha\beta}^{1/3} \Phi_{1/3}^{j} \bar{U}_{\alpha a} D_{\beta b}^{C} + \lambda_{\alpha\beta}^{2/3} \Phi_{-2/3}^{j} \bar{D}_{\alpha a} D_{\beta b}^{C} + \lambda_{\alpha\beta}^{4/3} \Phi_{4/3}^{j} \bar{U}_{\alpha a} U_{\beta b}^{C} \right. \\ \left. + \lambda_{\alpha\beta}^{U} \bar{U}_{\alpha a} V_{U}^{j\dagger\mu} \gamma_{\mu} Q_{\beta b}^{C} + \lambda_{\alpha\beta}^{D} \bar{D}_{\alpha a} V_{D}^{j\dagger\mu} \gamma_{\mu} Q_{\beta b}^{C} \right] + \text{h.c.},$$

After EWSB: $E_{(\mu)}^{j}, U_{(\mu)}^{j}, D_{(\mu)}^{j}$ (color $j = \overline{3}$, 6 and charges 4/3, -2/3, 1/3)

$$\mathcal{L}_{qqD} = \bar{K}_{j}^{ab} \left[\lambda_{\alpha\beta}^{E} E^{j} \ \bar{u}_{\alpha a} P_{L} C \bar{u}_{\beta b}^{T} + \lambda_{\alpha\beta}^{U} U^{j} \ \bar{d}_{\alpha a} P_{L} C \bar{d}_{\beta b}^{T} + \lambda_{\alpha\beta}^{D} D^{j} \ \bar{u}_{\alpha a} P_{L} C \bar{d}_{\beta b}^{T} \right. \\ \left. + \lambda_{\alpha\beta}^{E'} E^{j\mu} \ \bar{u}_{\alpha a} \gamma_{\mu} C P_{R} \bar{u}_{\beta b}^{T} + \lambda_{\alpha\beta}^{U'} U^{j\mu} \ \bar{d}_{\alpha a} \gamma_{\mu} C P_{R} \bar{d}_{\beta b}^{T} \right. \\ \left. + \lambda_{\alpha\beta}^{D'} D^{j\mu} (\bar{u}_{\alpha a} \gamma_{\mu} C P_{R} \bar{d}_{\beta b}^{T} + \bar{d}_{\alpha a} \gamma_{\mu} C P_{R} \bar{u}_{\beta b}^{T}) \right] + \text{h.c.}$$

They are: \tilde{q} , D_{qq} , ... (Must adopt Minimal Flavor Violation.)

$$(2). \ \underline{3\otimes 8}$$

 $ho \sim \left({f 3 \oplus ar 6 ,2}
ight)_{-1/3,2/3}^{1/2} \,, \quad
ho_U \sim \left({f 3 \oplus ar 6 ,1}
ight)_{2/3}^{1/2} \,, \quad
ho_{
m D} \sim \left({f 3 \oplus ar 6 ,1}
ight)_{-1/3}^{1/2} \,.$

(Not consider fermion higher dim. representations.)

$$(2). \ \underline{3\otimes 8}$$

 $ho \sim \left({f 3 \oplus ar 6 ,2}
ight)_{-1/3,2/3}^{1/2} \,, \quad
ho_U \sim \left({f 3 \oplus ar 6 ,1}
ight)_{2/3}^{1/2} \,, \quad
ho_{
m D} \sim \left({f 3 \oplus ar 6 ,1}
ight)_{-1/3}^{1/2} \,.$

(Not consider fermion higher dim. representations.)

Gauge-invariant operators at dim-5:

 $\mathcal{L}_{qgF} \sim \frac{g_s}{\Lambda} G^{a\mu\nu} \left[\lambda^L \bar{Q} \bar{K}_a \sigma_{\mu\nu} \rho + \lambda^U \bar{U} \bar{K}_a \sigma_{\mu\nu} \rho_U + \lambda^D \bar{D} \bar{K}_a \sigma_{\mu\nu} \rho_D \right] + \text{h.c.}$

$$(2). \ \underline{3\otimes 8}$$

 $ho \sim {f (3 \oplus ar 6,2)}^{1/2}_{-1/3,2/3} \;, \quad
ho_U \sim {f (3 \oplus ar 6,1)}^{1/2}_{2/3} \;, \quad
ho_{
m D} \sim {f (3 \oplus ar 6,1)}^{1/2}_{-1/3} \;.$

(Not consider fermion higher dim. representations.) Gauge-invariant operators at dim-5:

 $\mathcal{L}_{qgF} \sim \frac{g_s}{\Lambda} G^{a\mu\nu} \left[\lambda^L \bar{Q} \bar{K}_a \sigma_{\mu\nu} \rho + \lambda^U \bar{U} \bar{K}_a \sigma_{\mu\nu} \rho_U + \lambda^D \bar{D} \bar{K}_a \sigma_{\mu\nu} \rho_D \right] + \text{h.c.}$

After EWSB: d_i^* , u_i^* (color j = 3, $\overline{6}$ and charges -1/3, 2/3)

$$\mathcal{L}_{qgF} = \frac{g_s}{\Lambda} G^{a\mu\nu} \left[\bar{u} \bar{K}_{aj} (\lambda_L P_L + \lambda_U P_R) \sigma_{\mu\nu} \ d_j^* + \bar{d} \bar{K}_{aj} (\lambda_L P_L + \lambda_D P_R) \sigma_{\mu\nu} \ u_j^* \right] + \text{h.c.}$$

$$(2). \ \underline{3\otimes 8}$$

 $ho \sim \left({f 3 \oplus ar 6 ,2}
ight)_{-1/3,2/3}^{1/2} \,, \quad
ho_U \sim \left({f 3 \oplus ar 6 ,1}
ight)_{2/3}^{1/2} \,, \quad
ho_{
m D} \sim \left({f 3 \oplus ar 6 ,1}
ight)_{-1/3}^{1/2} \,.$

(Not consider fermion higher dim. representations.) Gauge-invariant operators at dim-5:

 $\mathcal{L}_{qgF} \sim \frac{g_s}{\Lambda} G^{a\mu\nu} \left[\lambda^L \bar{Q} \bar{K}_a \sigma_{\mu\nu} \rho + \lambda^U \bar{U} \bar{K}_a \sigma_{\mu\nu} \rho_U + \lambda^D \bar{D} \bar{K}_a \sigma_{\mu\nu} \rho_D \right] + \text{h.c.}$

After EWSB: d_j^* , u_j^* (color j = 3, $\overline{6}$ and charges -1/3, 2/3)

$$\mathcal{L}_{qgF} = \frac{g_s}{\Lambda} G^{a\mu\nu} \left[\bar{u} \bar{K}_{aj} (\lambda_L P_L + \lambda_U P_R) \sigma_{\mu\nu} \ d_j^* + \bar{d} \bar{K}_{aj} (\lambda_L P_L + \lambda_D P_R) \sigma_{\mu\nu} \ u_j^* \right] + \text{h.c.}$$

These 3's are just like new massive quarks (excited quarks), or q_{KK} ...

$$(2). \ \underline{3\otimes 8}$$

 $ho \sim \left({f 3 \oplus ar 6 ,2}
ight)_{-1/3,2/3}^{1/2} \,, \quad
ho_U \sim \left({f 3 \oplus ar 6 ,1}
ight)_{2/3}^{1/2} \,, \quad
ho_{
m D} \sim \left({f 3 \oplus ar 6 ,1}
ight)_{-1/3}^{1/2} \,.$

(Not consider fermion higher dim. representations.) Gauge-invariant operators at dim-5:

 $\mathcal{L}_{qgF} \sim \frac{g_s}{\Lambda} G^{a\mu\nu} \left[\lambda^L \bar{Q} \bar{K}_a \sigma_{\mu\nu} \rho + \lambda^U \bar{U} \bar{K}_a \sigma_{\mu\nu} \rho_U + \lambda^D \bar{D} \bar{K}_a \sigma_{\mu\nu} \rho_D \right] + \text{h.c.}$

After EWSB: d_i^* , u_i^* (color j = 3, $\overline{6}$ and charges -1/3, 2/3)

 $\mathcal{L}_{qgF} = \frac{g_s}{\Lambda} G^{a\mu\nu} \left[\bar{u} \bar{K}_{aj} (\lambda_L P_L + \lambda_U P_R) \sigma_{\mu\nu} \ d_j^* + \bar{d} \bar{K}_{aj} (\lambda_L P_L + \lambda_D P_R) \sigma_{\mu\nu} \ u_j^* \right] + \text{h.c.}$

These 3's are just like new massive quarks (excited quarks), or q_{KK} ...

(3).
$$\underline{8 \otimes 8} = \underline{1 \oplus 8 \oplus ...}$$

(4). $\underline{3 \otimes \overline{3}} = \underline{1 \oplus 8}$

skipped here.

ATLAS/CDF Bounds from di-jet:

More bounds from ATLAS di-jet result:

Summary:

In "simplified models", we considered the largest (possible) rate: single colored particle production R via u_v, d_v, g , the simplest topology: resonant two-body decay $R \rightarrow jj$.

Summary:

In "simplified models", we considered the largest (possible) rate: single colored particle production R via u_v, d_v, g , the simplest topology: resonant two-body decay $R \rightarrow jj$.

The current LHC data a few hundred $nb^{-1} \sim a$ few pb^{-1} have reached the sensitivity beyond the Tevatron (for ug, dg, ud, uu).

The most stringent bounds are $M_{u_6^*} > 1.5$ TeV, for $\frac{g_s}{\Lambda} \times \mathcal{O}(1)$ coupling.

Summary:

In "simplified models", we considered the largest (possible) rate: single colored particle production R via u_v, d_v, g , the simplest topology: resonant two-body decay $R \rightarrow jj$.

The current LHC data a few hundred $nb^{-1} \sim a$ few pb^{-1} have reached the sensitivity beyond the Tevatron (for ug, dg, ud, uu).

The most stringent bounds are $M_{u_6^*} > 1.5$ TeV, for $\frac{g_s}{\Lambda} \times \mathcal{O}(1)$ coupling.

Real excitement yet to come !