Early LHC Searches for Jets + MET

Eder Izaguirre SLAC/Stanford University

September 22, 2010 Topologies For Early LHC Searches

With: Daniele Alves and Jay G. Wacker

Based on: arXiv:1003.3886, arXiv:1008.0407, arXiv:1010.xxxx

How does the LHC cast the widest net possible for new physics?

Jets + MET

Large production rates

Reason to be optimistic for seeing excesses

Dark Matter

Wimp Miracle: DM a thermal relic if mass is 100 GeV to 1 TeV

Usually requires a dark sector that frequently contains new colored particles

Outline

• Jets + MET Simplified Models

• Early ATLAS results and interpretations

• Prospects for 1 fb^{-1}

Simplified Models

Models are created to solve problems or demonstrate mechanisms Realistic ones tend to be complicated and most details are irrelevant for searches

Simplified Model: Minimal particle content and free parameters

Limits of specific theories Only keep particles and couplings relevant for searches

Captures many specific models (MSSM, UED, etc) Easy to notice & explore kinematic limits

Two Simplified Models

 $pp\to \widetilde{g}\widetilde{g}$

"Gluino" Directly Decaying to LSP

3 body decay (*e.g.* heavy squarks)

(e.g. gauge mediation w/ squarks)

Alwall, Le, Lisanti, Wacker. arXiv:0809.3264, arXiv0803.0019 Alwall, Schuster, Toro. arXiv:0810.3921

mSugra has "Gaugino Mass Unification"

 $m_{\tilde{g}}: m_{\tilde{W}}: m_{\tilde{B}} = \alpha_3: \alpha_2: \alpha_1 \simeq 6: 2: 1$

Benchmarks miss some important kinematics

Lack of diversity (contrast with pMSSM)

Berger, Gainer, Hewett, Rizzo. arXiv:0812.0980,1009.2539

First Search for SUSY

ATLAS NOTE

ATLAS-CONF-2010-065

20 July, 2010

Early supersymmetry searches in channels with jets and missing transverse momentum with the ATLAS detector

Abstract

This note describes a first set of measurements of supersymmetry-sensitive variables in the final states with jets, missing transverse momentum and no leptons from the $\sqrt{s} = 7$ TeV proton-proton collisions at the LHC. The data were collected during the period March 2010 to July 2010 and correspond to a total integrated luminosity of $70 \pm 8 \text{ nb}^{-1}$. We find agreement between data and Monte Carlo simulations indicating that the Standard Model backgrounds to searches for new physics in these channels are under control.

Sets limit on

 $L = 70 \text{ nb}^{-1}$ $\sigma(pp \to \tilde{g}\tilde{g}X) \epsilon$

`efficiency for passing cuts

Cut	Topology	$1j + \not\!\!E_T$	$2^+j + E_T$	$3^+j + E_T$	$4^+j + \not\!$
1	p_{T1}	$> 70 \mathrm{GeV}$	$> 70 \mathrm{GeV}$	$> 70 \mathrm{GeV}$	$> 70 \mathrm{GeV}$
2	p_{Tn}	$\leq 30 {\rm GeV}$	$> 30 \operatorname{GeV}(n=2)$	$> 30 \mathrm{GeV}(n=2,3)$	$> 30 \operatorname{GeV}(n = 2 - 4)$
3	$ \not\!$	$> 40 \mathrm{GeV}$	$> 40 \mathrm{GeV}$	$> 40 \mathrm{GeV}$	$> 40 \mathrm{GeV}$
4	$p_{T\ell}$	$\leq 10 {\rm GeV}$	$\leq 10 { m GeV}$	$\leq 10 {\rm GeV}$	$\leq 10 { m GeV}$
5	$\Delta \phi(j_n, \not\!\!\! E_{T\mathrm{EM}})$	none	[> 0.2, > 0.2]	[> 0.2, > 0.2, > 0.2]	[> 0.2, > 0.2, > 0.2, none]
6	$E_{TEM}/M_{\rm eff}$	none	> 0.3	> 0.25	> 0.2
	$N_{ m Pred}$	46^{+22}_{-14}	6.6 ± 3.0	1.9 ± 0.9	1.0 ± 0.6
	$N_{ m Obs}$	73	4	0	1
	$\sigma(pp \to \tilde{g}\tilde{g}X)\epsilon _{95\% \text{ C.L.}}$	663 pb	46.4 pb	20.0 pb	56.9 pb

Sensitivity Estimate

How well does this search do on general models?

Challenge is calculating efficiencies for passing cuts

For 100% branching ratio, the reach is extended

Going Forward to 1fb⁻¹

How sensitive are searches to

Cut	Topology	$1j + \not\!\!E_T$	$2^+j + \not\!$	$3^+j + \not\!\!\!E_T$	$4^+j + \not\!$
1	p_{T1}	$> 100 \mathrm{GeV}$	$> 100 \mathrm{GeV}$	$> 100 \mathrm{GeV}$	$> 100 \mathrm{GeV}$
2	p_{Tn}	$\leq 50 \mathrm{GeV}$	$> 50 \mathrm{GeV}$	$> 50 \mathrm{GeV}$	$> 50 \mathrm{GeV}$
3	$\not\!$				
4	H_T				

Strategy Strategies

Find the minimal set of searches $(H_{T,i}, \not \!\!\! E_T i)$ covering the parameter space for simplified models

i.e. These contours are the optimal searches we found How many different searches are necessary to cover it?

 $E_T > 300 \text{ GeV}$ $H_T > 800 \text{ GeV}$

 $E_T > 400 \text{ GeV}$ $H_T > 550 \text{ GeV}$

Answer:

Answer:

Answer:

Lessons Learned

Simplified models require broadening acceptances of Jets and MET searches

Other simplified models to be studied squarks (particularly for matching) heavy flavor, longer cascade decays, lepton rich decays chains, etc.

Early LHC searches are capable of reaching uncharted territory

Every update has the potential for discovery!

Thank You

Back Up Slides

Matching: An Example

150 GeV particle going to 140 GeV LSP and 2 jets

Obscured by QCD with $\sqrt{\hat{s}}_{BG} \sim 20 \text{ GeV}$

Matching $\tilde{g} \to \chi q \bar{q}$

One Step Decays

Cascade Decays

Harder to see these events, lower MET, higher HT

$$\tilde{g} \to q\bar{q}'\chi^{\pm} \to q\bar{q}' \ (\chi^0 \ W^{\pm(*)})$$

Chose a slice through the parameter space

$$m_{\chi^{\pm}} = m_{\chi^0} + \frac{1}{2}(m_{\tilde{g}} - m_{\chi^0})$$

Missing energy changes dramatically between

 W^{\pm} vs $W^{\pm *}$

How we used this result

$$N_{s} = \mathcal{L} \ \sigma(pp \to \tilde{g}\tilde{g}X) \ \epsilon(m_{\tilde{g}}, m_{\chi})$$

$$P(N_{s+b} \le N_{obs}) \ge 5\%$$

$$P(N_{s+b} \le N_{obs}) = \sum_{n}^{N_{obs}} \text{Poisson}(n; N_{s+b})$$

$$Poisson(n; \lambda) = \frac{\lambda^{n}}{n!} e^{-\lambda}$$

How we used this result

$$N_{s} = \mathcal{L} \ \sigma(pp \to \tilde{g}\tilde{g}X) \ \epsilon(m_{\tilde{g}}, m_{\chi})$$

$$P(N_{s+b} \le N_{obs}) \ge 5\%$$

$$P(N_{s+b} \le N_{obs}) = \sum_{n}^{N_{obs}} \text{Poisson}(n; N_{s+b})$$

$$Poisson(n; \lambda) = \frac{\lambda^{n}}{n!}e^{-\lambda}$$
Fold in uncertainties:

$$\int d\mathcal{L} \ f'(\mathcal{L}; \mu_{\mathcal{L}}, \sigma_{\mathcal{L}}) \cdot \qquad \mathcal{L} = 70 \pm 8 \text{ nb}^{-1}$$

$$\int dN_{B} \ f(N_{b}; \mu_{b}, \sigma_{b}) \cdot \qquad N_{b} \ 3+j} = 1.9 \pm 0.9$$

$$\log \text{Normal distribution (sees background positive)}$$

Log Normal distribution (keeps background positive)

3 jet channel most important

Best limit on cross section $\sigma_{3+j} \epsilon \leq 20 \text{ pb vs} \quad \sigma_{4+j} \epsilon \leq 57 \text{ pb}$

Efficiency lower to get 4 jets with $p_T > 30 \text{ GeV}$ for $(m_{\tilde{g}}, m_{\chi}) \simeq (300, 0) \text{ GeV}$ leads to jet with energies of $E_j \sim 100 \text{ GeV}$

only 50% of the events that pass $p_{Tj3} > 30$ GeV, pass $p_{Tj4} > 30$ GeV

Our validation procedure

PGS MET mock up

Missing transverse momentum is computed from calorimeter cells belonging to topological clusters at the electromagnetic scale [30]. No corrections for the different calorimeter response of hadrons and electrons/photons or for dead material losses are applied. The transverse missing momentum

"true" MET/"EM" MET

PGS MET with linear fit to Sum ET

200

Effectively raises MET cut by 35% to 50%

Straight PGS MET

PGS/1.5

PGS MET with linear fit to Sum ET

The slight loss of sensitivity at lower LSP mass from fractional MET cut

In limit $m_{\chi} \to m_{\tilde{g}}, p_{\chi} = E_j$ maximizes *f*, and drops for lighter LSP

