GGM at Colliders: Multilepton Signatures

Josh Ruderman Princeton University

September 22, 2010

JTR and David Shih, 1009.1665

and work in progress with, Michael Park, David Shih, Scott Thomas, and Yue Zhao.

General Gauge Mediation

- There are a lot of models...
	- What is a low-energy effective field theorist to do?

General Gauge Mediation

- There are a lot of models. What is a low-energy effective field theorist to do?
- General Gauge Mediation (GGM) (Meade, Seiberg, Shih)
	- **1** light gravitino
	- 2 flavor symmetric boundary condition
	- ³ soft terms satisfy sum rules (but have no enforced ordering or hierarchies!)
	- **4** small A terms

General Gauge Mediation

- There are a lot of models. What is a low-energy effective field theorist to do?
- General Gauge Mediation (GGM) (Meade, Seiberg, Shih)
	- **1** light gravitino
	- 2 flavor symmetric boundary condition
	- ³ soft terms satisfy sum rules (but have no enforced ordering or hierarchies!)
	- **4** small A terms

GGM provides a framework for the model-independent study of gauge mediation collider physics.

For a more detailed overview, catch David Shih's talk on Friday.

Phenomenological Gauge Mediation

We choose to specify soft parameters at the weak scale,

```
M_1, M_2, \mu, tan \betam_{e_L}, m_{e_R}, m_{\tau_L}, m_{\tau_R}M<sub>3</sub>
```
For simplicity, lets decouple the squarks ($m_{\tilde{q}} \gtrsim$ TeV), which means the sum rules can always be satisfied.

Phenomenological Gauge Mediation

We choose to specify soft parameters at the weak scale,

```
M_1, M_2, \mu, tan \betam_{e_L}, m_{e_R}, m_{\tau_L}, m_{\tau_R}M<sub>3</sub>
```
For simplicity, lets decouple the squarks ($m_{\tilde{q}} \geq$ TeV), which means the sum rules can always be satisfied.

The NLSP decays to the gravitino and its superpartner.

$$
\Gamma = \frac{m_{NLSP}^5}{16\pi F^2} = (0.1 \text{ mm})^{-1} \times \left(\frac{m_{NLSP}}{100 \text{ GeV}}\right)^5 \left(\frac{100 \text{ TeV}}{\sqrt{F}}\right)^4
$$

For this talk, I'm interested in prompt multilepton signatures so I choose right-handed slepton NLSPs and low scale breaking, $\sqrt{F} \sim 100$ TeV

Slepton co-NLSP corresponds to $\delta m = m_{\tilde{e}_R} - m_{\tilde{\tau}_1} \lesssim 10$ GeV. Every event has at least two e, μ , or τ , plus MET.

Slepton co-NLSPs in MGM

A popular example is minimal gauge mediation (MGM),

$$
W = \lambda X \phi_i \bar{\phi}_i
$$

Slepton co-NLSPs occur when $N \gtrsim 3$ and tan $\beta \lesssim 10$.

Slepton co-NLSPs in MGM

A popular example is minimal gauge mediation (MGM),

$$
W = \lambda X \phi_i \bar{\phi}_i
$$

Slepton co-NLSPs occur when $N \gtrsim 3$ and tan $\beta \lesssim 10$.

The spectrum pretty much always looks like,

But in GGM there are many different possible spectra.

The collider signature depends on the production mode:

D Direct $I_R \tilde{I}_R$ production \rightarrow OS dilepton + MET LEP2 sets the limit, $m_{\tilde{e}_R} = m_{\tilde{\mu}_R} > 96$ GeV, $m_{\tilde{\tau}_1} > 87$ GeV.

Backgrounds are large at the Tevatron and LHC ($t\bar{t}$, dibosons, ...).

Its better to consider production of heavier states that decay to the sleptons, producing extra leptons along the way,

The collider signature depends on the production mode:

D Direct $I_R \tilde{I}_R$ production \rightarrow OS dilepton + MET LEP2 sets the limit, $m_{\tilde{e}_R} = m_{\tilde{\mu}_R} > 96$ GeV, $m_{\tilde{\tau}_1} > 87$ GeV.

Backgrounds are large at the Tevatron and LHC ($t\bar{t}$, dibosons, ...).

Its better to consider production of heavier states that decay to the sleptons, producing extra leptons along the way,

2 Electroweak production \rightarrow multileptons $+$ MET Tevatron has advantage for now

The collider signature depends on the production mode:

D Direct $I_R \tilde{I}_R$ production \rightarrow OS dilepton + MET LEP2 sets the limit, $m_{\tilde{e}_R} = m_{\tilde{\mu}_R} > 96$ GeV, $m_{\tilde{\tau}_1} > 87$ GeV.

Backgrounds are large at the Tevatron and LHC ($t\bar{t}$, dibosons, ...).

Its better to consider production of heavier states that decay to the sleptons, producing extra leptons along the way,

- **2** Electroweak production \rightarrow multileptons $+$ MET Tevatron has advantage for now
- **3** Colored production \rightarrow multileptons + jets + MET Early LHC will soon have discovery reach

Wino production, $p\bar{p} \to \tilde{W}^0 \tilde{W}^\pm$

$$
M\begin{bmatrix}\n\frac{\tilde{W}^{\pm}, \tilde{W}^{0}}{\tilde{e}_{R}, \tilde{\mu}_{R}, \tilde{\tau}_{1}} \\
-\frac{\tilde{e}_{R}, \tilde{\mu}_{R}, \tilde{\tau}_{1}}{\tilde{e}_{R}}\n\end{bmatrix}
$$

The signal is trileptons plus MET with 1 or 3 tau.

Parameters: $m_{\tilde{W}}, m_{\tilde{l}_R}, \, \text{Br}(\tilde{W}^0 \to \tilde{\tau}_1)$

MGM-like spectrum: left-handed slepton production

MGM-like spectrum: left-handed slepton production

MGM-like spectrum: left-handed slepton production

Up to six leptons per event.

Parameters: $m_{\tilde{l}_L}$, $m_{\tilde{B}}$, $m_{\tilde{l}_R}$

Tevatron Limits

To determine the limits and reach, we simulated CDF same-sign dilepton and trilepton searches with pythia and PGS.

Here we fix,

 $Br(\tilde{W}^0 \rightarrow \tilde{\tau}_1) = 1/3$ 1 $\frac{1}{2}(m_{\widetilde l_L}+m_{\widetilde l_R})$

Simplified Model for the Early LHC

For the early LHC lets consider colored production.

$$
M \begin{array}{c}\n\tilde{g} \\
\hline\n\tilde{B} \\
-\tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_1 \\
-\tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_1\n\end{array}
$$

Simplified Model for the Early LHC

For the early LHC lets consider colored production.

Simplified Model for the Early LHC

For the early LHC lets consider colored production.

Parameters: $m_{\tilde{g}}, m_{\tilde{B}}, m_{\tilde{l}_R}$

Tevatron Limit and Early LHC Reach

Here we fix

 $m_{\tilde{B}}=\frac{1}{2}$ $\frac{1}{2}(m_{\widetilde{g}}+m_{\widetilde{l}_R})$

Gauge mediation is a much bigger space than MGM.

- Gauge mediation is a much bigger space than MGM.
- We suggest choosing parameters at the weak scale, looking at spectra with as few light particles as possible for a given signal, and studying 2D spaces spanned by the production mass and NLSP mass.

- Gauge mediation is a much bigger space than MGM.
- We suggest choosing parameters at the weak scale, looking at spectra with as few light particles as possible for a given signal, and studying 2D spaces spanned by the production mass and NLSP mass.
- **•** There's a lot of mass reach left at the Tevatron for electroweak production.

- Gauge mediation is a much bigger space than MGM.
- We suggest choosing parameters at the weak scale, looking at spectra with as few light particles as possible for a given signal, and studying 2D spaces spanned by the production mass and NLSP mass.
- **•** There's a lot of mass reach left at the Tevatron for electroweak production.
- The LHC will cover new ground for colored production by the winter conference.

Backup Slides

$$
m_{\tilde{g}} = 600 \text{ GeV}
$$

$$
m_{\tilde{B}} = 450 \text{ GeV}
$$

$$
m_{\tilde{l}_R} = 300 \text{ GeV}
$$

A danger of simplified models is a bias towards low multiplicity final states.

So how about a less-simple model?

A danger of simplified models is a bias towards low multiplicity final states.

So how about a less-simple model?

A danger of simplified models is a bias towards low multiplicity final states.

So how about a less-simple model?

A danger of simplified models is a bias towards low multiplicity final states.

So how about a less-simple model?

The signal is up to $8l + \text{jets} + \text{MET}$

Parameters: $m_{\widetilde{g}}, m_{\widetilde{W}}, m_{\widetilde{l}_L}, m_{\widetilde{l}_R}, \mathrm{Br}(\widetilde{l}_L \to \widetilde{\tau}_1)$

A danger of simplified models is a bias towards low multiplicity final states.

So how about a less-simple model?

The signal is up to $8l + \text{jets} + \text{MET}$

Parameters: $m_{\widetilde{g}}, m_{\widetilde{W}}, m_{\widetilde{l}_L}, m_{\widetilde{l}_R}, \mathrm{Br}(\widetilde{l}_L \to \widetilde{\tau}_1)$