Higgs signals for SUSY Models Consistent with CoGeNT/DAMA

Jack Gunion U.C. Davis

Topologies Workshop, SLAC, September 22, 2010

Papers/Collaborators

- CoGeNT, DAMA, and Neutralino Dark Matter in the Next-To-Minimal Supersymmetric Standard Model, John F. Gunion, Alexander V. Belikov, Dan Hooper, e-Print: arXiv:1009.2555 [hep-ph]
- CoGeNT, DAMA, and Light Neutralino Dark Matter, Alexander V. Belikov, John F. Gunion, Dan Hooper, Tim M.P. Tait, e-Print: arXiv:1009.0549 [hep-ph]

Introduction

- CoGeNT and DAMA both have hints of dark matter detection corresponding to a very low mass particle with very large spin-independent cross section, $\sigma_{SI} \sim (1.4 - 3.5) \times 10^{-4}$ pb, for $m_{DM} = (9 - 6)$ GeV (see Hooper, *et al.*, e-Print: arXiv:1007.1005 [hep-ph]). Note: required σ_{SI} is reduced by $\sim 60\%$ if $\rho = 0.485$ GeV/cm³ vs. usual 0.3 GeV/cm³.
- One would hope that this scenario could be consistent with simple supersymmetric models.

However, the MSSM fails. If one adjusts parameters so that Ωh^2 is ok (just barely possible to get small enough value at low $m_{\tilde{\chi}_1^0}$) then σ_{SI} takes on its maximum possible value of $\sim 0.17 \times 10^{-4}$ pb. The problem with Ωh^2 would be less severe if m_{A^0} could be smaller than allowed by LEP limits, but σ_{SI} , dominated by CP-even Higgs exchange, cannot be increased beyond the above.

$$\sigma_{SI} \approx 0.17 \times 10^{-4} \text{ pb}\left(\frac{N_{13}^2}{0.1}\right) \left(\frac{\tan\beta}{50}\right)^2 \left(\frac{100 \text{GeV}}{m_{H^0}}\right)^4 \cos^4 \alpha \,, \quad (1)$$

where we have written $\tilde{\chi}_1^0 = N_{11}\tilde{B} + N_{12}\tilde{W}^3 + N_{13}\tilde{H}_d + N_{14}\tilde{H}_u$. In the above, N_{13}^2 cannot be much larger than 0.1 because of limits on the Z invisible width.

And, this is before imposing the Tevatron limit, $B(B_s \rightarrow \mu^+ \mu^-) \leq 5.8 \times 10^{-8}$. Once imposed, the largest σ_{SI} for scenarios with $\Omega h^2 \sim 0.1$ is $\sigma_{SI} \sim 0.017 \times 10^{-4}$ pb (Feldman, Liu, Nath, arXiv:1003.0437 [hep-ph]).

• What about the NMSSM?

The NMSSM is defined by adding a single SM-singlet superfield \widehat{S} to the MSSM and imposing a Z_3 symmetry on the superpotential, implying

$$W = \lambda \ \widehat{S}\widehat{H}_u\widehat{H}_d + \frac{\kappa}{3} \ \widehat{S}^3 \tag{2}$$

The reason for imposing the Z_3 symmetry is that then only dimensionless couplings λ , κ enter. All dimensionful parameters will then be determined by the soft-SUSY-breaking parameters. In particular, the μ problem is solved via

$$\boldsymbol{\mu}_{\rm eff} = \boldsymbol{\lambda} \langle \boldsymbol{S} \rangle \,. \tag{3}$$

 μ_{eff} is automatically of order a TeV (as required) since $\langle S \rangle$ is of order the SUSY-breaking scale, which will be below a TeV.

• The extra singlet field \widehat{S} implies: 5 neutralinos, $\widetilde{\chi}_{1-5}^0$ with $\widetilde{\chi}_1^0 = N_{11}\widetilde{B} + N_{12}\widetilde{W}^3 + N_{13}\widetilde{H}_d + N_{14}\widetilde{H}_u + N_{15}\widetilde{S}$ being either singlet or bino, depending on M_1 ; 3 CP-even Higgs bosons, h_1, h_2, h_3 ; and 2 CP-odd Higgs bosons, a_1, a_2 .

• The soft-SUSY-breaking terms corresponding to the terms in W are:

$$\lambda A_{\lambda} S H_{u} H_{d} + \frac{\kappa}{3} A_{\kappa} S^{3} \,. \tag{4}$$

When $A_{\lambda}, A_{\kappa} \to 0$, the NMSSM has an additional $U(1)_R$ symmetry, in which limit the a_1 is pure singlet and $m_{a_1} = 0$.

If, $A_{\lambda}, A_{\kappa} = 0$ at M_U , RGE's give $A_{\lambda} \sim 100 \text{ GeV}$ and $A_{\kappa} \sim 1-20 \text{ GeV}$, resulting in $m_{a_1} < 2m_B$ (see later) being quite natural and not fine-tuned.

- The NMSSM maintains all the attractive features (GUT unification, RGE EWSB) of the MSSM while avoiding important MSSM problems.
- In the simplest "ideal" Higgs scenarios (Dermisek and Gunion), it is the h_1 that has strong WW, ZZ couplings, with $m_{h_1} \leq 100$ GeV for perfect precision electroweak, baryogenesis, no finetuning, LEP excess, ..., escaping LEP limits via $h_1 \rightarrow a_1 a_1 \rightarrow 4\tau$ ($m_{a_1} < 2m_B$).

But, it turns out that if you want to maximize σ_{SI} it should be the lightest Higgs, h_1 , that has enhanced coupling to down-type quarks while it is the

 h_2 that couples to WW, ZZ in SM-like fashion. Typical large σ_{SI} scenarios have $m_{h_1} < 90$ GeV and $m_{h_2} \lesssim 110$ GeV, so still pretty ideal.

In some cases, h_1 and h_2 will share the WW, ZZ coupling.

One finds that there is then no problem (Gunion, Hooper, McElrath, e-Print: hep-ph/0509024) getting $\Omega h^2 \sim 0.1$ (using $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to a_1 \to X$ with m_{a_1} small). Further in paper 1) we show that if one pushes then $\sigma_{SI} \sim (0.1 - 0.2) \times 10^{-4}$ pb is possible without violating the $B(B_s \to \mu^+ \mu^-)$ bound, or any other bound.

But, to get σ_{SI} as large as 1×10^{-4} requires violating $(g-2)_{\mu}$ quite badly, and having some enhancement of the *s*-quark content of the nucleon.

 In paper 2), we explored the extended-NMSSM (ENMSSM) in which we only generalize the superpotential and soft-SUSY-breaking potential, keeping to just one singlet superfield.

$$v_0^2 \hat{S} + \frac{1}{2} \mu_S \hat{S}^2 + \mu \hat{H}_u \hat{H}_d + \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{1}{3} \kappa \hat{S}^3 , \qquad (5)$$

and the soft Lagrangian

$$B_{\mu}H_{u}H_{d} + \frac{1}{2}m_{S}^{2}|S|^{2} + B_{S}S^{2} + \lambda A_{\lambda}SH_{u}H_{d} + \kappa A_{\kappa}S^{3} + H.c.$$
(6)

Note the explicit μ and B_{μ} terms $\Rightarrow \mu_{\text{eff}} = \mu + \lambda \langle S \rangle$ and $B_{\mu}^{eff} = \lambda A_{\lambda} \langle S \rangle + B_{\mu}$. These reduce the appeal of the model somewhat, but there are string-theory-inspired sources for such explicit terms.

The ENMSSM appears to be the simplest SUSY model capable of describing the CoGeNT/DAMA events and getting $\Omega h^2 \sim 0.11$, while maintaining consistency with all known constraints.

To accomplish this, we find that the $\tilde{\chi}_1^0$ should be singlino (vs. bino for maximal σ_{SI} in the NMSSM) and the h_1 should be largely singlet (rather than mainly H_d as needed for maximal σ_{SI} in the NMSSM).

To first approximation, Ωh^2 is controlled by $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to h_1 \to X$ and σ_{SI} is determined by h_1 exchange between the $\tilde{\chi}_1^0$ and the down-type quarks in the nucleon, esp. s and b.

Dark Matter in the NMSSM and Higgs topologies

• There is a fairly clear strategy for maximising σ_{SI} .

The largest elastic scattering cross sections arise in the case of large $\tan \beta$, significant N_{13} (the Higgsino component of the $\tilde{\chi}_1^0$), and relatively light m_{H_d} , where H_d is the Higgs with enhanced coupling to down quarks, $C_{H_d d \overline{d}} \sim \tan \beta$. In this limit, the relevant scattering amplitude is

$$\frac{a_d}{m_d} \approx \frac{-g_2 g_1 N_{13} N_{11} \tan \beta}{4m_W m_{H_d}^2},\tag{7}$$

which in turn yields

$$\sigma_{\tilde{\chi}_{1}^{0}p,n} \approx \frac{g_{2}^{2} g_{1}^{2} N_{13}^{2} N_{11}^{2} \tan^{2} \beta m_{\tilde{\chi}_{1}^{0}}^{2} m_{p,n}^{4}}{4 \pi m_{W}^{2} m_{H_{d}}^{4} (m_{\tilde{\chi}_{1}^{0}} + m_{p,n})^{2}} \Big[f_{T_{s}}^{(p,n)} + \frac{2}{27} f_{TG}^{(p,n)} \Big]^{2} \approx 1.7 \times 10^{-5} \text{ pb} \left(\frac{N_{13}^{2}}{0.10} \right) \left(\frac{\tan \beta}{50} \right)^{2} \left(\frac{100 \text{GeV}}{m_{H_{d}}} \right)^{4}.$$
(8)

- Constraints on the light $h_1 \sim H_d$ configuration are significant! We had to update NMHDECAY to include all the latest constraints and then linked to micrOMEGAs as in NMSSMTools.
 - **1.** Constraints on the neutral Higgs sector from Zh_2 at LEP.

These are important since we can minimize m_{h_1} for low m_{SUSY} and this keeps m_{h_2} low.

In these cases the h_2 can be in the "ideal" zone and escapes LEP detection via $h_2 \rightarrow a_1 a_1$ decays with $m_{a_1} < 2m_B$ (but very close to avoid BaBar limits).

Recall again that Dermisek and I have argued that the necessary "light- a_1 " finetuning is not large due to the $U(1)_R$ symmetry limit of the NMSSM.

2. LEP constraints on h_1a_1 and h_1a_2 .

The h_1a_1 cross section is $\propto maximal \times (\cos \theta_A)^2$. Thus, small $\cos \theta_A$ is desirable, which fits with the need for not having overly strong $\widetilde{\chi}_1^0 \widetilde{\chi}_1^0 \to a_1^* \to X$ annihilations, so as to achieve adequate Ωh^2 .

3. Tevatron limits.

There are two especially relevant limits given focus on large $\tan \beta$:

- (a) $b\overline{b}h_1$ associated production, which scales as $C^2_{h_1b\overline{b}}$, the latter being something we want to maximize.
- (b) And, since the h^+ tends to be quite light (e.g. $\sim 120 140 \text{ GeV}$) when the h_2 is SM-like, it is critical to include constraints from Tevatron limits on $t \to h^+ b$ with $h^+ \to \tau^+ \nu_{\tau}$ (dominant at large $\tan \beta$).

Figure 1: In left plot, must correct for fact that these curves assume $m_{H^0} \sim m_{A^0}$ which does not normally apply in our case.

- 4. *B*-physics constraints.
 - (a) The most restricting constraint arises from the very strong limit on $B(B_s \to \mu^+ \mu^-).$

Achieving a small enough value fixes A_t as a function of $m_{
m SUSY}$.

(b)
$$b \rightarrow s\gamma$$

- The $\mu_{
 m eff} > 0$ scenarios have roughly 1σ discrepancy with the 2σ experimental window.
- The $\mu_{
 m eff} < 0$ scenarios only rarely have a $b
 ightarrow s \gamma$ problem.

(c) $B^+
ightarrow au^+
u_ au$.

- The $\mu_{
 m eff} > 0$ scenarios are mostly within the 2σ experimental window.
- The $\mu_{
 m eff}$ < 0 scenarios with largest σ_{SI} typically have $1 2\sigma$ deviations from the experimental 2σ window.

5.
$$(g-2)_{\mu}$$
.

This is possibly crucial.

- For $\mu_{\rm eff} < 0$, the largest σ_{SI} values are achieved when $(g - 2)_{\mu}$ is a few sigma outside the 2σ limits including theoretical uncertainties. If $(g - 2)_{\mu}$ is strictly enforced, then it is not possible to get σ_{SI} as large as that suggested by the COGENT data.

- For μ_{eff} > 0, the largest σ_{SI} yield (g 2)_μ within the 2σ exp.+theor. window, but after including all other constraints the σ_{SI} values for μ_{eff} > 0 are not as large as those found with μ_{eff} < 0.
 6. Ωh²:
 - Of course, we require that any accepted scenario have correct relic density (~ 0.1) within the somewhat loose experimental limits encoded in NMSSMTools.

Results

Figure 3: m_{h_2} and m_{h^+} vs. m_{h_1} for $\mu_{\text{eff}} = +200 \text{ GeV}$ points. Only level-I (LEP via NMHDECAY, BaBar, Ωh^2) constraints are imposed. There is a great amount of point overlap in this plot.

Figure 4: σ_{SI} vs. $m_{\tilde{\chi}_1^0}$ for points fully consistent with Tevatron limits on $b\overline{b} + Higgs$ and $t \rightarrow h^+b$. Level-I constraints are imposed. $(g-2)_{\mu}$ still terrible (perfectly ok) for $\mu_{\text{eff}} < 0$ $(\mu_{\text{eff}} > 0)$.

Table 1: Properties of a particularly attractive but phenomenologically complex NMSSM point with $\mu_{\text{eff}} = +200 \text{ GeV}$, $\tan \beta = 40$ and $m_{\text{SUSY}} = 500 \text{ GeV}$. All Tevatron limits ok. h_3 is the most SM-like. In the last row, the brackets give the range of *B*-physics predictions for this point after including theoretical errors as employed in NMHDECAY.

	λ		κ		A	λ	L L	A_{κ}		<i>A</i> ₁	M_2		M	3	A_{soft}		
	0.081		0.01605		-36 GeV		$-3.25 \mathrm{GeV}$			GeV	200 Ge	200 GeV		300 GeV		GeV	
			m_{h_1}		m_{j}	h_2	m_{h_3}		n	n_{a_1}	m_{a_2}		m_{h^+}				
			53.8 GeV		97.3 GeV		126.2 GeV		10.	$5 \mathrm{GeV}$	98.9	98.9 GeV		128.4 GeV			
C	$V^{(h_1)}$)	$C_V(h_2)$		$C_V(h_3)$		m_{eff}		$C_{h_1 b}$	$\overline{C_{h_1 b \overline{b}}} \mid C$		$\begin{bmatrix} & & \\ h_2 b \overline{b} & & C_h \end{bmatrix}$		$\frac{1}{3b\overline{b}} C_{a_1b\overline{b}}$			2 b b
-	-0.505		0.137		0.8	52	101 GeV		0.24		39.7	39.7 −₹		.1 6.7		39.4	
m	$m_{\widetilde{\chi}^0_1}$		N ₁₁		V ₁₃	m	$\left \begin{array}{c} m_{\widetilde{\chi}^0_2} \end{array} \right ^{-1}$		$\tilde{\chi}_1^{\pm}$		σ_{SI}		σ_S		C		Ωh^2
7 (GeV		-0.976 -		-0.212 79.1		. GeV 153		GeV	GeV 0.93 ×		$\times 10^{-5}$ pb		$0.45 imes10^{-4}$ H		b	0.12
			$B(h_1 - $	→ a ₁	<i>a</i> ₁)	$B(h_2)$	$2 \rightarrow 2b$,	2 au)	B(h)	$3 \rightarrow 2$	(h+2a)	B	$B(h_3 -$	$\rightarrow 2b, 2$	2 au)		
			0.	96		0.	87, 0.12			0.3				0.58, 0.09			
	I	B(a	$v_1 ightarrow jj$	$B(a_1$	ightarrow 2 au	·) B	$B(a_1 \rightarrow$		2μ) $B(a_{2})$		$_2 ightarrow 2b, 2 au)$		$B(h^+ \to \tau^+$		v)		
			0.28	0.79			0.00		3 (2	0.97					
ĺ		$B_{\boldsymbol{s}}$	$\rightarrow \mu^+ \mu$	ι_)		B(b	$ ightarrow s \gamma)$	$\rightarrow s\gamma)$		h^+ –	$\rightarrow \tau^+ \nu_{\tau})$		$(g-2)\mu$				
$[1.7-6.0] imes 10^{-9}$					[5.8	$[5.8 - 12.5] imes 10^{-4}$				$[0.91 - 4.22] imes 10^{-4}$				$[4.42 - 5.53] imes 10^{-9}$			

Table 2: The $\pm 2\sigma$ experimental ranges for the *B* physics observables tabulated in the last row of Table 1.

$B(B_s o \mu^+ \mu^-)$	$B(b ightarrow s \gamma)$	$B(h^+ o au^+ u_{m au})$	$(g-2)\mu$
$< 5.8 imes 10^{-8}$ (95% CL)	$[3.03 - 4.01] imes 10^{-4}$	$[0.34-2.3] imes 10^{-4}$	$[0.88 - 4.6] imes 10^{-9}$

Table 3: LHC Neutral Higgs Discovery Channels $(b\bar{b}h_2, b\bar{b}a_2 \rightarrow b\bar{b}2\tau$ absent since $m_{h_2} \sim m_{a_2} < 100$ GeV, the lower limit of the studies used — this should be a highly viable mode) (also $t\bar{t} \rightarrow b\bar{t}h^+ \rightarrow \tau^+\nu X$ = excellent channel at LHC)

$L = 30 \text{ fb}^{-1}$	$L=300~{ m fb}^{-1}$									
$WW ightarrow h_3 ightarrow 2 au$	$b\overline{b}h_3 ightarrow b\overline{b}2 au$	$gg ightarrow h_3 ightarrow 4\ell$	$gg ightarrow h_3 ightarrow 2\ell 2 u$	$WW ightarrow h_3 ightarrow 2 au$						
3.8σ	2σ	1.4σ	1.1σ	14σ						

• Additional points.

1) Higgs decays to $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ are unimportant.

2) $gg \rightarrow a_1 \rightarrow \mu^+ \mu^-$ looks promising (Dermisek, Gunion, arXiv:0911.2460) because $C_{a_1 b \overline{b}} \sim 6$ and m_{a_1} is not directly under the Υ_{3S} peak.

• In a very recent paper by Das and Ellwanger (arXiv:1007.1151), cross sections as large as those found here are not achieved. They have $\sigma_{SI} \sim (1 - 1.5) \times 10^{-6} \text{ pb}$ (without enhancing the *s*-quark content of the nucleon).

Figure 2: Upper bounds on the spin-independent cross section σ_p^{SI} in the NMSSM for default values of the strange quark content of nucleons as a full red line, and an enhanced strange quark content of nucleons as a dashed red line. Also shown are regions compatible with DAMA, CoGeNT and CDMS-II, and limits from Xenon10, Xenon100 and CDMS-II

as explained in the text.

Their smaller σ_{SI} is largely because they did not seek scenarios with $h_1 \sim H_d.$

In addition, they did not take advantage of the $m_{a_1} \sim 10$ GeV possibilities (they regard these as too finetuned).

Should we opt for enhanced *s*-quark nucleon content, our cross sections would go up by about the same factor of ~ 3 as in their plot.

Dark Matter in the ENMSSM and Higgs topologies

• Given the 'failure' of the NMSSM, we realized that a qualitatively different and possibly promising alternative was to have a singlino LSP interacting with a singlet-like h_1 . The NMSSM linking of parameter space to LEP and other limits was too constraining for such a scenario to have large σ_{SI} .

Thus, we moved to the ENMSSM and hoped to be able to realize the 'singlino-singlet' (SS) scenario.

First, some background to see why this SS scenario has a 'miraculous' balance between the desired σ_{SI} and the observed $\Omega h^2 \sim 0.11$.

• The singlino coupling to down-type quarks is given by:

$$\frac{a_d}{m_d} = \frac{g_2 \kappa N_{15}^2 \tan \beta F_s(h_1) F_d(h_1)}{8m_W m_{h_1}^2} \tag{9}$$

where $h_1 = F_d(h_1)H_d^0 + F_u(h_1)H_u^0 + F_s(h_1)H_S^0$. This leads to

$$\sigma_{\chi_1^0 p, n} ~\approx~ 2.2 \times 10^{-4} ~\mathrm{pb} \left(\frac{\kappa}{0.6}\right)^2 \left(\frac{\tan\beta}{50}\right)^2 \left(\frac{45 ~\mathrm{GeV}}{m_{h_1}}\right)^4 \left(\frac{F_s^2(h_1)}{0.85}\right) \left(\frac{F_d^2(h_1)}{0.15}\right)$$

which is consistent with the value required by CoGeNT and DAMA/LIBRA. Furthermore, the mostly singlet nature ($F_s^2(h_1) = 0.85$) of the h_1 would hopefully allow it to evade the constraints from LEP II and the Tevatron.

Of course, one really sums coherently over all the CP-even Higgs bosons.

$$\sigma_{\chi_1^0\chi_1^0}v = \frac{N_c g_2^2 \kappa^2 m_b^2 F_s^2 F_d^2}{64\pi m_W^2 \cos^2\beta} \frac{m_{\chi_1^0}^2 (1 - m_b^2/m_{\chi_1^0}^2)^{3/2} v^2}{(4m_{\chi_1^0}^2 - m_{h_1}^2)^2 + m_{h_1}^2 \Gamma_{h_1}^2}, \quad (10)$$

•

where v is relative velocity between the annihilating neutralinos, $N_c = 3$ is a color factor and Γ_{h_1} is the width of the exchanged Higgs. The annihilation cross section into $\tau^+\tau^-$ is obtained by replacing $m_b \to m_{\tau}$ and $N_c \to 1$. This yields the thermal relic abundance of neutralinos: $\Omega_{\chi_1^0}h^2 \approx \frac{10^9}{M_{\rm Pl}} \frac{m_{\chi_1^0}}{T_{\rm FO}\sqrt{g_\star}} \frac{1}{\langle \sigma_{\chi_1^0\chi_1^0}v \rangle}$, where g_\star is the number of relativistic degrees of freedom at freeze-out, $\langle \sigma_{\chi_1^0\chi_1^0}v \rangle$ is the thermally averaged annihilation cross section at freeze-out, and $T_{\rm FO}$ is the temperature at which freeze-out occurs.

For the range of masses and cross sections considered here, we find $m_{\chi_1^0}/T_{
m FO} \approx 20$, yielding a thermal relic abundance of

$$\Omega_{\chi_1^0} h^2 pprox 0.11 \left(rac{0.6}{\kappa}
ight)^2 \left(rac{50}{ aneta}
ight)^2 \left(rac{m_{h_1}}{45 \, ext{GeV}}
ight)^4 \left(rac{7 \, ext{GeV}}{m_{\chi_1^0}}
ight)^2 \left(rac{0.85}{F_s^2(h_1)}
ight) \left(rac{0.15}{F_d^2(h_1)}
ight), (12)$$

i.e. naturally close to the measured dark matter density, $\Omega_{
m CDM}h^2 = 0.1131 \pm 0.0042$.

• The only question is can we achieve the above situation without violating

LEP and other constraints. Basically, one wants a certain level of decoupling between the singlet sectors and the MSSM sectors, but not too much. We found some 'unusual' parameter choices that appeared to accomplish this at a 'naive' level.

We then performed parameter scans with an extended version of NMHDECAY and micrOMEGAs that includes both the non-NMSSM parameters of Eqs. (5) and (6) as well as the latest *B*-physics and Tevatron constraints. We find points for 15 $< \tan \beta < 45$ that are consistent (within 2σ) with all collider and *B*-physics constraints (aside from $\sim 2.5\sigma$ excursions in $b \rightarrow s\gamma$ and $b\bar{b}h, h \rightarrow \tau^+\tau^-$) having the appropriate thermal relic density and $\sigma_{\chi_1^0 p,n}$ as large as $few \times 10^{-4}$ pb.

• The complete framework has contributions to $\sigma_{\chi_1^0 p,n}$ and $\Omega_{\chi_1^0}$ beyond Eqs. (10) and (11) and high- $\sigma_{\chi_1^0 p,n}$ points typically have large contributions from the non-singlet Higgses.

A 'Typical' Point

Table 4: Properties of a typical ENMSSM point with $\tan \beta = 45$ and $m_{\rm SUSY} = 1000$ GeV.

λ		ĸ		λs			A_{λ}		A	A_{κ}		M_1		M_2		1	<i>M</i> ₃	Asoft		
0.011	. (0.596		-0.0	-0.026 GeV		3943 GeV		17.3	17.3 GeV		$150 { m GeV}$		300 GeV		900 GeV		679 GeV		
		B		$egin{array}{c} B_{m{S}} \ 0 \end{array}$		μ_{S}			v_S^3		μ		1	$B\mu$		$\mu_{ ext{eff}}$		B^{eff}_{μ}		
						0		7.8 GeV		V	4.7 GeV		164 Ge		658	${ m GeV}$	16	164 GeV		556 G
			[$\overline{m_{h_1}}$		$\overline{m_{h_2}}$,	m_{h_3}	1	m_{a_1}		m_{a_2}		\boldsymbol{m}	h^+]			
			[82 GeV		118 GeV		/ 16	164 GeV		82 GeV		$164 { m GeV}$		178 GeV]			
		$F_S^2(h_1)$		F	$d^{2}(h_{1})$	F	$F_S^2(h_2)$		$F_u^2(h_2)$		$F_S^2(h_3)$.		$d^2(h_3)$		$F_{S}^{2}(a_{1})$		$F_S^2(a_2$	2)		
		0.86			0.14		0.0		0.996	.996		.4 0.86			0.86		0.14			
		$C_V(h_1)$) ($C_{V}(h_{2})$		$C_V(h_3)$		$C_{h_1b\overline{b}}$				$C_{h_3b\overline{b}}$		$C_{a_1 b \overline{b}}$			5		
		-0.009		3	0.999		-0.041		l 16.8		2.9		41.7		-16.9		41.7			
				m	$\widetilde{\chi}_1^0$	N	2 L1	N_{13}^2 -	$+ M_{14}^2$	Ν	V_{15}^2		σ_{SI}			Ωh^2]			
_			ſ	4.9 GeV		0.	0.0 0.0		.0	1	.0	2.0 ×	× 10 ⁻⁴ pb		o (0.105]			
	$B(h_1 \rightarrow j)$		$ ightarrow \widetilde{\chi}_1^0$	$B_1^0 \widetilde{\chi}_1^0) \mid B(h_1)$		$h_1 \rightarrow$	ightarrow 2b, 2 au)		$B(h_2$	$B(h_2 ightarrow \widetilde{\chi})$		$\tilde{\zeta}_1^0 \mid B(h_2 -$		ightarrow 2b, 2 au)		B(h	$i^+ \rightarrow \gamma$	$r^+\nu)$		
	0.64).64 0.3			0.33,	33,0.03			0.003		0		0.88, 0.092		0.97				
	$B(a_1$		(a ₁	$\rightarrow \widetilde{\chi}^{0}$	$\rightarrow \widetilde{\chi}_1^0 \widetilde{\chi}_1^0) \qquad B(a_1)$		(a ₁ -	ightarrow 2b, 2 au) 1		$B(a_2,h_3 \rightarrow 2)$		$\rightarrow \widetilde{\chi}_1^0 \widehat{\chi}$	$\widetilde{\chi}_1^0 \widetilde{\chi}_1^0) = B(a_2, h)$		$a_3 ightarrow 2b, 2 au)$					
				0.64			0.33, 0.03			0.05				0.85, 0.095						

Notes

1. What you see is that the h_1, a_1 have separated off from something that is close to an MSSM-like doublet sector with $h_2 \sim h^0$ being SM-like and $h_3 \sim H^0$ and $a_2 \sim A^0$.

- 2. There are some $h_2, a_2 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$ decays, but at such a low branching ratio level that detection would be unlikely.
- 3. Decays to pairs of Higgs not of importance.
- 4. h_1 and a_1 decay primarily to $\tilde{\chi}_1^0 \tilde{\chi}_1^0$ but there also decays to $b\overline{b}$ and $\tau^+ \tau^-$ with reduced branching ratios compared to 'normal'.
- 5. h_1 and a_1 do have somewhat enhanced couplings to $b\overline{b}$ (factor of 17) and so the rates for $gg \to b\overline{b}h_1$ and $gg \to b\overline{b}a_1$ will be large \Rightarrow possibly detect in the $h_1, a_1 \to \tau^+\tau^-$ channel at very high L.

Is there a hope for $gg o b\overline{b} + (h_1, a_1) o b\overline{b} +
ot\!\!\!\!/ p_T$ at the predicted rate?

6. It is the very large value of A_{λ} and the very small λ that keep singlet and MSSM sectors fairly separate.

Conclusions

- Perhaps we have already seen the first sign of the Higgs sector in CoGeNT/DAMA data and dark matter relic abundance.
- If this scenario applies, the main observable Higgs will be MSSM-like. So far, the parameter choices (large A_{λ} in particular) imply a relatively small mass separation between the h^0 -like h_2 and the H^0 , A^0 -like h_3 , a_2 .
- Highly precise absolute determination of the h_2 , h_3 and a_2 branching ratios would be needed to detect the slight 'bleed-in' to the singlet sector.
- With high L maybe could see the h_1, a_1 directly.
- I'm *still* waiting to see some sign of a Higgs!

