W/Z/t/h Signals From Strong Dynamics

Markus Luty UC Davis

with Spencer Chang and Jared Evans A work in progress...

Strong Higgs Sector

How do we test these ideas?

W, Z, t have largest mass \Rightarrow "portals" to the Higgs sector

LHC as a W/Z Collider

 W_L , Z_L composite \Rightarrow interact strongly at TeV Resonances have strong 2-body decay \Rightarrow broad

Strong WW scattering well-studied, <u>not</u> discussed here

LHC as a Top Collider

Origin of Top Mass

Yukawa coupling

 $\Delta \mathcal{L} = \bar{Q}_L t_R \mathcal{H} + \text{h.c.}$ e.g. $\mathcal{H} = \bar{\psi} \psi$ in technicolor

 \mathcal{H} creates states with $J = 0, I = 0, 1, \dots$

Top compositeness

Top mixes with composite state (RS models) Top is composite ("topcolor")

Origin of Top Mass

Yukawa coupling

 $\Delta \mathcal{L} = \bar{Q}_L t_R \mathcal{H} + \text{h.c.}$ e.g. $\mathcal{H} = \bar{\psi} \psi$ in technicolor

 \mathcal{H} creates states with $J = 0, I = 0, 1, \dots$

• Top compositeness

Top mixes with composite state (RS models) Top is composite ("topcolor")

Origin of Top Mass

- Yukawa coupling $\Delta \mathcal{L} = \bar{Q}_L t_R \mathcal{H} + \text{h.c.}$ e.g. $\mathcal{H} = \bar{\psi} \psi$ in technicolor \mathcal{H} creates states with $J = 0, I = 0, 1, \ldots$ decay to $W_L W_L Z_L, Z_L Z_L$
 - Top compositeness

Top mixes with composite state (RS models) Top is composite ("topcolor")

Modeling Higgs Sector

Requirements:

- No unphysical growing amplitudes
- Proper treatment of widths, QCD radiation, etc.
- Well-defined parameter space

 \Rightarrow Lagrangian!

2 Higgs doublet model is simplest "simplified model"

Modeling Higgs Sector

Requirements:

- No unphysical growing amplitudes
- Proper treatment of widths, QCD radiation, etc.
- Well-defined parameter space

linearly realized ⇒Lagrangian!

2 Higgs doublet model is simplest "simplified model"

Minimal 2HDM

$$\mathcal{L}_{\rm top} = \lambda_t \bar{Q}_L t_R (\cos \gamma H_1 + \sin \gamma H_2)$$

 $m_1^2, m_2^2, \lambda_1, \ldots, \lambda_4, \lambda_t, \gamma = 6$ free parameters (v, m_t fixed)

Minimal 2HDM

Impose custodial
$$SU(2)$$

 $h^0, H^0 \qquad I = 0$
 $(A^0, H^{\pm}) \qquad I = 1$
Impose $H_1 \rightarrow -H_1, \ H_2 \rightarrow +H_2$

$$V = m_1^2 |H_1|^2 + m_2^2 |H_2|^2 + \frac{1}{4}\lambda_1 |H_1|^4 + \frac{1}{4}\lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \frac{1}{4}\lambda_4 (H_1^{\dagger}H_2 + \text{h.c.})^2$$

$$\mathcal{L}_{\rm top} = \lambda_t \bar{Q}_L t_R (\cos \gamma H_1 + \sin \gamma H_2)$$

 $m_1^2, m_2^2, \lambda_1, \ldots, \lambda_4, \lambda_t, \gamma = 6$ free parameters (v, m_t fixed)

M2HDM Parameter Space

Define angles
$$\alpha$$
, β
 $\begin{pmatrix} h^0 \\ H^0 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} H_1^0 \\ H_2^2 \end{pmatrix}$
 $\tan \beta = \frac{v_1}{v_2}$

Parameterize model by

$$m_{h^0}, \, m_{H^0}, \, m_{A^0} = m_{H^\pm}, \, lpha, \, eta, \, \gamma$$

Angles control couplings, e.g.

$$g_{h\bar{t}t} = \frac{m_t \cos(\alpha + \gamma)}{v \sin(\beta + \gamma)}$$

$$g_{hWW} = gm_W \sin(\beta - \alpha)$$

Search Parameter Space

Rate uncertain \Rightarrow treat as free parameter by reweighting

Parameterize search for a given topology by relevant masses and rate

Benchmark angles (couplings) and irrelevant masses

Simplified Models Suck

...especially for strong dynamics

Unitarity ⇒ relation between widths and rates Violated by rescaling rates

Can be correctly modeled for specific signals, but not practical for wide range of topologies

Do we really expect experimentalists to search for inconsistent models?

Yes, if they can be RECAST

"Technicolor" Topologies

• A^0 kinematically accessible, couples to $\bar{t}t$

$$gg \to A^0 \to \bar{t}t, \ W^+W^-Z, \ ZZZ$$

• A^0 kinematically accessible, suppressed coupling to $\bar{t}t$

$$\begin{array}{ccc} gg, \, VV \to h^0 \to A^0 Z \\ & \to W^+ W^- ZZ, \, \, ZZZZ \end{array}$$

• A^0 not kinematically accessible

$$gg, VV \to H^0 \to h^0 h^0$$
$$\to W^+ W^- W^+ W^-, W^+ W^- ZZ, ZZZ$$

"Technicolor" Topologies

• A^0 kinematically accessible, couples to $\overline{t}t$

$$gg \to A^0 \to \bar{t}t, W^+W^-Z, ZZZ \xrightarrow{A^0 \to Zh^0,} h^0 \to WW, ZZ$$

• A^0 kinematically accessible, suppressed coupling to $\bar{t}t$

$$gg, VV \rightarrow h^0 \rightarrow A^0Z$$

 $\rightarrow W^+W^-ZZ, ZZZ$

• A^0 not kinematically accessible

$$gg, VV \to H^0 \to h^0 h^0$$
$$\to W^+ W^- W^+ W^-, W^+ W^- ZZ, ZZZ$$

 $gg \to A^0 \to ZZZ \to \ell^+\ell^- + \text{jets} + E_{T,\text{miss}}$

Parameterize search by m_A , m_h , rate

Composite Higgs Topologies

• A^0 kinematically accessible, couples to $\bar{t}t$

 $gg \to A^0 \to Zh^0$

• A^0 kinematically accessible, suppressed coupling to $\bar{t}t$

$$gg, VV \to H^0 \to A^0 Z, \ H^{\pm} W^{\mp}$$

 $\to ZZh^0, \ W^+ W^- h^0$

• A^0 not kinematically accessible

$$gg, VV \to H^0 \to h^0 h^0$$

Example: Zh

 $gg \to A^0 \to Zh^0$

Parameterize search by m_A , m_h , rate

7 TeV LHC, $m_h = 120 \text{ GeV}$

Monte Carlo

MadGraph implementation in 2HDM4TC

• Calculator: 2HDM4TCCalc

Input: m_h , m_H , m_A , α , β , γ

Generates param_card.dat

Warnings for large quartic couplings

• Model file: 2HDM4TC

Includes ggh^0 (*etc.*) vertices using form factor $gggh^0$ (e.g. for radiation) not supported

Conclusions

 2 Higgs doublet model is a useful "simplified model" for signals motivated by top + strong Higgs sector Also interesting on its own...

- Proposed priority topologies for searches
- Possible sensitivity in early LHC ($7 \text{ TeV}, 1 \text{ fb}^{-1}$)
- Lots to do...

FIGHT THE

SUSY POWER

Backup Slides

Example: WWZ $gg \rightarrow A^0 \rightarrow W^+W^-Z \rightarrow \ell^{\pm}\ell^+\ell^-$ jets + $E_{T,miss}$

Example: WWZ $gg \rightarrow A^0 \rightarrow W^+W^-Z \rightarrow \ell^{\pm}\ell^+\ell^-$ jets + $E_{T,miss}$

Example: ZZZ

 $gg \to A^0 \to ZZZ \to \ell^+\ell^- + \text{jets} + E_{T,\text{miss}}$

