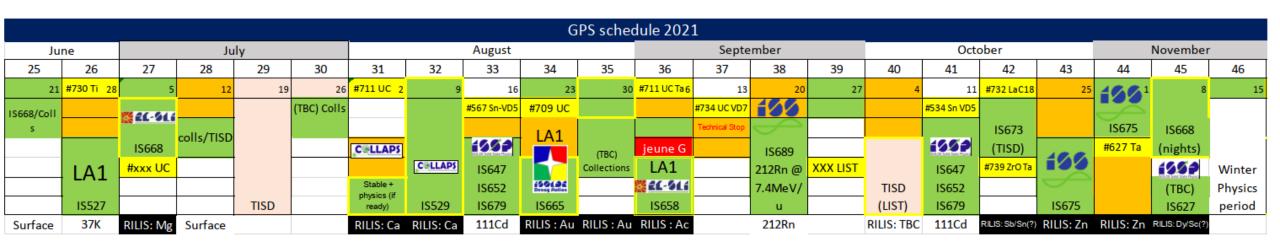

• ISCC 92 November 2021 Coordinator's report

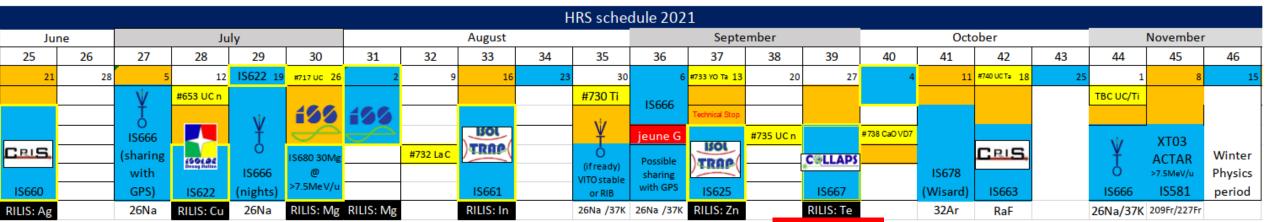
- Schedule 2021
- Draft planning 2022
 - Access to cern
 - Around the hall
 - Training



2021 Beam requests and schedule

- ~676 shifts requested
- Low energy Physics 21 June
- HIE ISOLDE: stable July 7; physics in W30
- Lack of ventilation in Class A labs, UC units were "predicted in 2020"
- Combine with some used targets from 2018
- Caused some issues with mass markers/outgassing
- Travel has still been very difficult for many countries (see access section later)
- Inevitable bias to local groups (or those able to run remotely)

Row Labels	Count of Experimen	nt Sum of Requested shifts
Actar	2	12
COLLAPS	2	40
Corset/XT03	1	12
CRIS	5	72
IDS	7	44
IDS	5	50,5
IDS fast timing	6	25,001
IDS Vandle	1	15
IDS/TISD	1	2
ISOLTRAP	3	36
ISS	7	117
LA1 Bordeaux	1	12
Magnetic	2	8
moments	2	0
MIRACLS	1	7
SSP	20	53
TAS	3	19
Thorium clock	2	11
TISD/ISOLTRAP	4	60
VITO	4	17
VITO	1	0
Wisard	1	24
Edinbugh setup	1	21
Gandalph	1	6
TISD	1	6
GLM	2	6
Grand Total	84	675,501


ISOLDE Schedule 2021: weeks 25 - 46

ROC run not successful

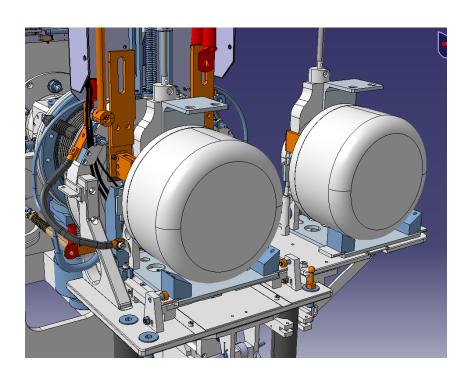
Disappointing LIST run

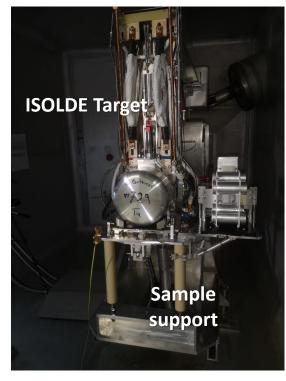
In general, protons have been pretty reliable....

Beamgates not operating to ISOLTRAP requirements

IS701: Pb

Start of protons for physics: 21 June End of protons for physics 15 November


Physics Physics RILIS
HPS GRS run


run KI: 25

KJ: 25.08.21

New GPS irradiation station: now ready for testing

40.04	132										
		45.0004	BII 10								
ISOL	DE Week		RILIS	RILIS GPS HRS		CA0	MEDICIS	GPS IS	p's	Visits	other
	2	AM	_		#711 UC	HRS					
Monday	200		_	Installation of target on			0900	#635 UC			
<u>6</u>	08/11/2021	PM		irradation station	stable setup	HRS	#723M to	(TBC)			
2				10.00	0.11.1447		MEDICIS				
		night	(S)	IS688	Stable to LA1 if possible	HRS			NORMGPS		
	2	AM	Ë		IS658	HRS			NORMHRS		
Tuesday	09/11/2021		A _C		10050	LIDO					INTC
l es	5	PM	Ö		IS658	HRS			NORMHRS		Open Session
-	60		- =	10000		LUDO					Session
		night	R	IS688		HRS			NORMGPS		
a S	2	AM	PS			HRS			NORMHRS		INTC closed
Wednesday	10/11/2021	DIA	(G		T	LIDO					session. NO
ğ	5	PM	<u>o</u>		Transmission to XT03	HRS					protons
×	10	-1-64	RILIS: Dy (GPS) RILIS: Ac (HRS)	10000	IS581 tests (if ready)	HRS			NORMHRS		during day
		night	N.	IS688	IS581	HRS			NORMHRS		
>	2	AM	-		15581	HKS	(TBC) #734		NORWINKS	1100	
Thursday	/20:	PM	-		IS581	HRS	UC VD7		NORMHRS	STFC	-
Ē	11/11/2021	PIVI			15561	HKS	indirect		NORWINKS	visit to	
F		-1-64	-	IS688	IS581	HRS	irradiation		aharad	ISOLDE	
		night AM		15000	IS581	HRS			shared NORMHRS		
	72	AIVI	_		15561	TINO			14OKWII IIKO		
Friday	73	PM			IS581	HRS		#635	NORMHRS		-
iξ	12/11/2021	FIVI	_		15561	пко		removed?	NORWINGS		
	12	night			IS581	HRS			NORMHRS		-
		AM		IS627 (GLM)	IS581	HRS			NORMHRS		
>	2	AIVI	_	(without p+)	13361	TINO			NORWINGS		
휼	/20	PM	-	(without p+)	IS581	HRS			NORMHRS		
Saturday	13/11/2021	I IVI		IS627 (GLM)	13361	пко			14OKWII IIKO		
U)	13	night	ည	(without p+)	IS581	HRS			NORMHRS		
		AM	RILIS: Sc	IS627 (GLM)	IS581	HRS			NORMHRS		-
	21	AIVI	- 🗒	(without p+)	10301	11110			14OKWII IIKO		
Sunday	14/11/2021	PM	~	(without p+)	IS581	HRS			NORMHRS		
Sur	111	FIVI		IS627 (GLM)	13361	пко			NORWINGS		
	4	night	_	(without p+)	IS581	HRS	+		NORMHRS		+
		AM		(without pri)	IS581	11110			NORMHRS		†
>	121	, uvi			10301		(TBC)				
Monday	5/11/2021	PM	1	Protons off at 0600. End of o	pline period 2021. Preparations		#734 UC				+
Μo	δ 2 <u>- m</u>		1	Protons off at 0600. End of online period 2021. Preparations begin for ISOLDE winter physics.			VD7 to				
_	#	night			22 William Physics.		GPS				t
		-9									

Summary of week: Quite a busy week before protons end for 2021. GPS will continue with Tb collections overnight until Thursday morning, (sharing with HRS users as required), HRS setup for Fr and Ac beams from Monday onwards. Ac to LA2 for IS658 if possible on Tuesday to confirm some transitions related to earlier run in September. ACTAR will take Fr beam for last 4 days of protons to XT03. 209Fr and 227Fr @ >7.5MeV/L. First week using the new GPS irradiation station.

GPS: Used target #627 Ta for Dy/Tb collections. Setup to GLM. HV = 30kV. Collections of 149Tb overnight for shipping early each morning. Sc extraction without protons on final weekend.

HRS: #711 UC for AC and Fr beams. Setup at 30kV in bunched mode. Some shots of Ac to LA1 on Tuesday, else priority to ACTAR run on XT03. Stable setup with 238U.

Protons: NO protons expected during day on Monday 8 November. Rest of the week NORMGPS and NORMHRS will be in demand up to 2uA until end of proton run on 1:

November. NO protons during Wednesday daytime for intervention on Linac4.

Operations responsible: Alberto (167538) till Tuesday 9th November, Erwin (164585) till Tuesday 16th November

For more details about visits: https://publicoutreach.cern.ch/outreach/panel#agenda/today ISOLDE Daily meeting: 09:15 Monday; 08:45 Tue-Fri via Zoom: https://cern.zoom.us/j/98894210347?pwd=WUtSMIFKbkVicWVkKytNOG5nMFNFdz09

Final weekly schedule of the online period

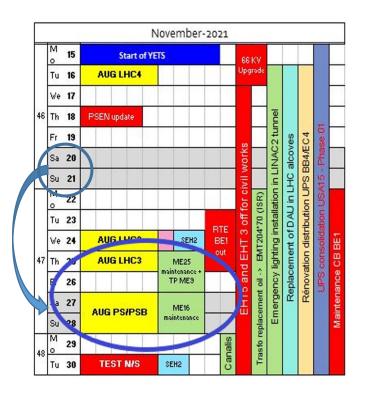
- Quite busy as expected
- Inauguration of the new GPS irradiation station: another column for the planning!
- Use of MEDICIS for winter physics irradiation
- Growing need to have more straightforward visibility of protons taken on target depending on which station is receiving protons.
- Target exchanges/movements becoming more common. Quite some problems this year which will hopefully be ironed out after the YETS.

ISOLDE 2021 schedule: end of year including winter physics

GPS HRS

	Nove	December			
44	45	46	47	48	49
1	8	15	TBC 22	TBC 29	6
		#734 UC VD7		TBC 7Be	
IS675	IS688			for IS586	
#627 Ta	(nights)			TBC	
			TBC LIST TISD		
	(TBC)	IS691		TBC Ag	
	IS627			for IS672	
RILIS: Zn	RILIS: Dy/Sc(?)	Xe isotopes	TISD	RILIS: Be/Ag	

	Nove	December			
44	45	46	47	48	49
1	8	15	22	29	6
TBC UC/Ti	IS658				
		#740 UC W		IS663	
				(TBC)	
IS666	IS581	IS663	IS663	MIRACLS Test	
26Na/37K	209Fr/227Fr	R	aF isotope	S	
	RILIS: Ac				


Protons finish on 15 November @ 0600 in W46.

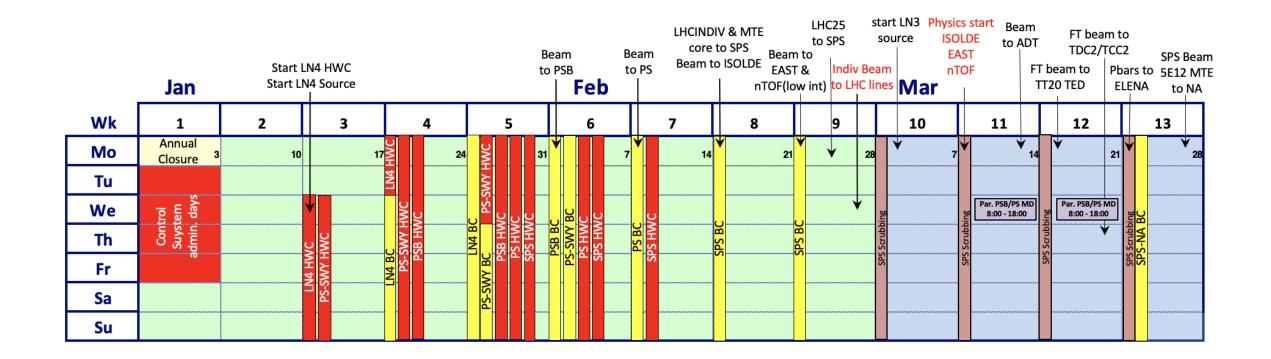
IS691 and IS663 are scheduled for winter physics.

Remaining runs on GPS need to be confirmed. Dependent on irradiation possibilities and target availability Note that interruptions due to electrical tests are expected during winter physics period.

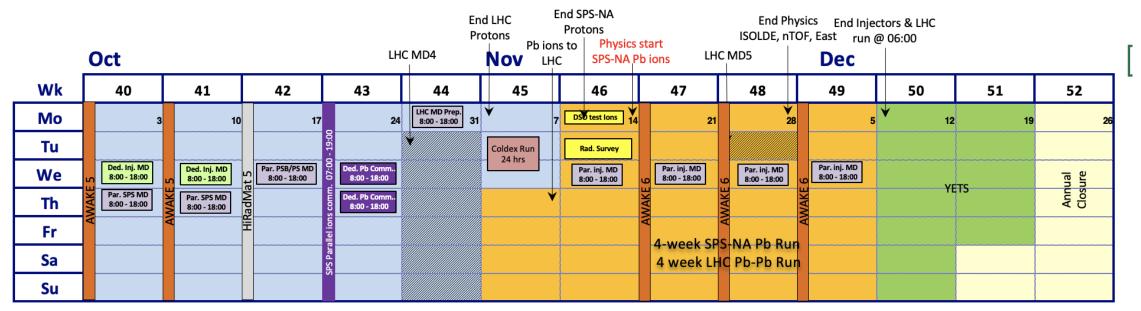
Note that AUG and network switching will affect the winter runs, esp the long CRIS RaF

		Sum of	
Row	/ Labels	Scheduled 2021	Sum of Delivered 2021
bio	physics		
CO	LLAPS	37	17
Coll	ections:		
1	08Ag		
Coll	ections:		
1	63Ho	2	
	CRIS	70,5	25
Gai	ndalph		
Ganda	alph/CRIS		
HIE	ISOLDE	56	50
	IDS	21	14
IDS/I	SOLTRAP		
IDS/	VANDLE		
in-sou	arce / IDS		
ISC	LTRAP	27	7
Medic	al physics	13,5	1
MI	RACLS		
Nucle	ar masses		
	SSP	31,5	32,5
	TAS		
1	ΓISD		
TIS	SD/IDS		
Travel	ling Setup	14	14
Travell	ing Setup	;	
	CSLI	11	11
	/ITO	22	12
	dmill/IDS		
	ISARD	14	10
Grai	nd Total	319,5	193,5

Preliminary overview of running period 2021


So far around 200 radioactive shifts have been delivered

23 experiments ran/scheduled in 2021


Fewer than other years, partly because some groups ran several times, also due to covid situation favouring the locals.

Draft schedule for 2022

- Wk1: Control system administration days starts on last day of annual closure
- Wk3: Start of Linac 4 source and injectors complex re-commissioning
- Wk9: LHCProbe/Pilot/INDIV ready for LHC
- Wk10 13: SPS scrubbing
- Wk11: Physics start ISOLDE, nTOF and East Area preceded by 2 weeks setting-up
- Wk11 and Wk 12: Parallel MD for PSB and PS on Wednesday
- Wk13: Start 2-week beam commissioning SPS-NA interleaved with scrubbing during nights

Draft schedule 2022: end of year

- Wk46: End SPS-NA protons and start SPS-NA Pb ions physics 4 weeks Pb ions run
- Wk47+48+49: AWAKE run 6
- Wk48: End protons physics for ISOLDE, nTOF and PS-EA cool-down in view of YETS
- Wk48: LHC MD block 5 (ions)
- Wk50: Mon.12 December @ 06:00 stop off all beams
- 2 dedicated MD blocks, 7 parallel MD blocks and 1 LHC MD preparation block

Extremely long year: 259 days for physics

However, note that HIE ISOLDE only starting around 20th July at current estimations : only ~132 days available...

Dates still to be confirmed at research board in December

Beam request for ISOLDE 2022*

Estimated ISOLDE running period: March 14th 2022 to November 29th 2022

PLEASE COMPLETE ALL INFORMATION REQUESTED AND RETURN BY December 20th 2021

Experiment INTC-I-171

Towards laser spectroscopy of exotic fluorine isotopes

Spokesperson: Ronald Fernando, Garcia Ruiz
Spokesperson email: rgarciar@mit.edu
Contact person: Ronald Fernando, Garcia Ruiz
Contact email: rgarciar@mit.edu
Shifts approved for Run3: 13

If you require stable beam or commissioning time for a detector or setup, please fill out the separate request for in the attached document.

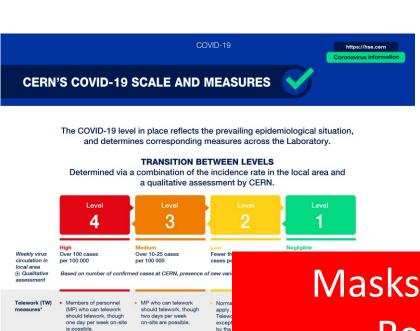
What is the main ISOLDE limitation for your experiment/experimental programme?
Can you tune the ISOLDE stable beam to your setup without technical assistance?
Yes No No
${\it \#Please\ list/update\ the\ name\ and\ affiliation\ of\ collaborators\ working\ on\ this\ ISOLDE\ experiment:\ INTC-I-17-17-17-18-18-18-18-18-18-18-18-18-18-18-18-18-$
Comments and suggestions
In the two attached Excel templates:
• list the publications originating from INTC-I-171 not included in your last beam-time request
fill in your beam-time request 2021

Beam requests for 2022

- Ready to be sent out, this weekend
- To be returned before Christmas, 17th Dec
- Earlier than usual, but need to prepare targets for 2022.
- Also useful to know plans of some collaborations in particular Miniball.
- Spokespersons will be contacted later in 2022 to see if availabilties are still valid.

^{*} Please e-mail the completed form to karl.johnston@cern.ch

	Sum of Shifts	
Row Labels	remaining for	Sum of Shifts remaining after
▼ hienbysies	Run3	2021 till end of Run3
⊟ biophysics N/A	9,5 9,5	9,5 9,5
□ COLLAPS	56	39
N/A	56	39
□ Collections: 108Ag	30	30
N/A	30	30
□Collections: 163Ho	6	6
N/A	6	6
□CRIS	115,5	90,5
N/A	115,5	90,5
⊟Gandalph	8	8
N/A	8	8
⊟Gandalph/CRIS	6	6
N/A	6	6
⊟HIE ISOLDE	550	500
ISS	147	97
Miniball	275	275
Prototype	0	0
SEC	23	23
XT03	23	23
XT03: Actar	28	28
XT03: Corset	12	12
XT03: Edinburgh	42	42
⊟IDS	107	93
N/A	107	93
⊟IDS/ISOLTRAP	6	6
N/A ⊟IDS/VANDLE	6	6
N/A	18 18	18 18
∃in-source / IDS	10	10
N/A	10	10
⊟ISOLTRAP	42	35
N/A	42	35
■ Medical physics	16	15
N/A	16	15
⊟MIRACLS	17	17
N/A	17	17
■ Nuclear masses	8	8
N/A	8	8
⊟SSP	136	103,5
N/A	136	103,5
⊟TAS	39	39
N/A	39	39
⊟TISD	20	20
N/A	20	20
∃TISD/IDS	9	9
N/A	9	9
☐Travelling Setup	24	10
N/A	24	10
■Travelling Setup; ECSLI	11	0
N/A	11	0
□VITO N/A	29	17
N/A ■Windmill/IDS	29 22,5	17 22,5
□ Winamiii/iDS N/A	22,5 22,5	22,5 22,5
⊟WISARD	22,5 24	22,5 14
N/A	24	14
Grand Total	1319,5	1126
Orana rotar		


Shift backlog before next week's INTC

Row Labels *	Count of Exp. no.	Sum of Shifts remaining after 2021 till end of Run3	Sum of Shifts remaining for Run3
INTC 63	34	470	485
INTC 64	18	201	285.5
INTC 65	14	182	245
INTC 66	16	139	153
INTC 67	11	134	151
Grand Total	93	1126	1319.5

Next week's INTC

Open session 9 November
Closed session 10 November
Agenda here:
https://indico.cern.ch/event
/1085117/

Row Labels	▼ Count of Title S	um of Shifts requested
■Addendum	1	0
⊞ nTOF	1	0
■ Letter of intent	4	11
■ISOLDE	3	11
TISD	2	6
TISD/HIE	1	5
⊞ nTOF	1	0
⊟ Proposal	6	118
■ISOLDE	6	118
Decay spectroscopy	2	39
Laser spectroscopy	1	29
Total absorption spectroscopy	1	14
HIE ISOLDE/ISS	1	24
IDS	1	12
⊞ (blank)		
Grand Total	11	129

are au

Relati authori

CERN authori for club

public events and within

sanitizing gel

available at the

CERN currently in level orange

Normal working conditions Normal working conditions Telework (TW) Members of personnel MP who can telework (MP) who can telework should telework, though measures* should telework, though two days per week Telework may be one day per week on-site on-site are possible. exceptionally requested is possible. by the Organization. MP and honorary members are authorised, only for Access to MP and honorary members > Standard Access **CERN sites**** professional reasons and in consultation with their are authorised, in supervisors consultation with their >> Retirees can access on-site facilities, such as bank safe supervisors deposit boxes, the CHIS office or the pension fund, only Retirees can access on-site > Standard Access if strictly necessary Relatives of CERN Members of Personnel are not Relatives of CERN MP are Standard Access

Masks and proximeters still mandatory. Remote meetings still favoured.

NO firm decision on use of covid certificate yet

Not allowed Distributors of hand similar to those in Geneva sanitizing gel

CERN access measures "With the ramping up of Host-State vaccination campaigns, access conditions have been revised and now apply across all age group

PIPE Club activities outside CERN: Host State re

Fresume with measures similar to those valid in Geneva museums, shops and the

Vulnerability to COVID-19

It is the responsibility of each person to declare a vulnerability.

MP and honorary members are authorised, only for professional reasons and in consultation with their

▶ CERN club members are not authorised

No club activities are allowed on site

and following HSE-approved protocols

Petirees can access on-site facilities, such as bank safe deposit boxes, the CHIS office or the pension fund, only Belatives of CERN Members of Personnel are not

supervisors

For people with a declared vulnerability, specific protection plans must be defined, independently of the COVID-19 level in place.

CERN clubs

exhibition

CERN shop,

Public on-site

events within

the fenced area

Measures such as washing hands, wearing masks, keeping distance, self-isolation and quarantine

Public on-site events within the fenced area Not allowed

- Allowed with measures similar to those in Geneva public events and within CERN access measures
- Distributors of hand sanitizing gel available at the venue

hand

* Measures do not apply to those members of the personnel who cannot telework or whose presence on-site is needed for carrying out the ongoing activities of the Organization. ** With the ramping up of Host-State vaccination campaigns, access conditions have been revised and now apply across all age groups.

Vulnerability to COVID-19

It is the responsibility of each person to declare a vulnerability.

For people with a declared vulnerability, specific protection plans must be defined, independently of the COVID-19 level in place.

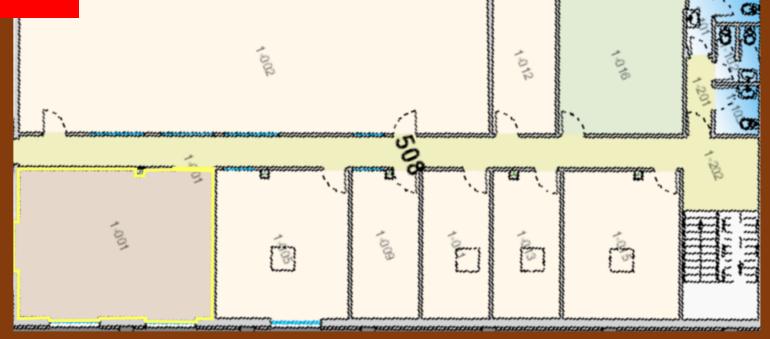
Please note

Measures such as washing hands, wearing masks, keeping distance, self-isolation and guarantine, duty-travel and space-occupancy restrictions remain in place at least until virus circulation is assessed as low.

Restrictions on number of people <u>remain</u>

(has become challenging to manage groups in recent weeks....)

- 1-002 →
 Control room
 (291 m³)
- 170 m³/h
- 6 people


- 1-016 → Kitchen (77 m³)
- Vent?
- 4 people

• 1-013 → xx

 (42 m^3)

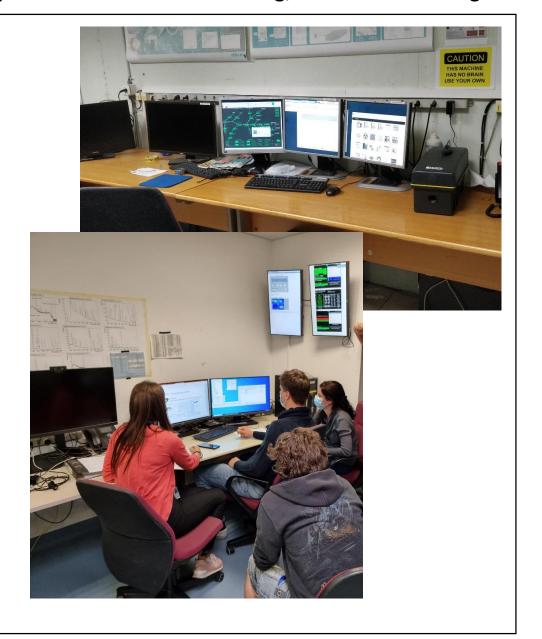
2 people

Vent?

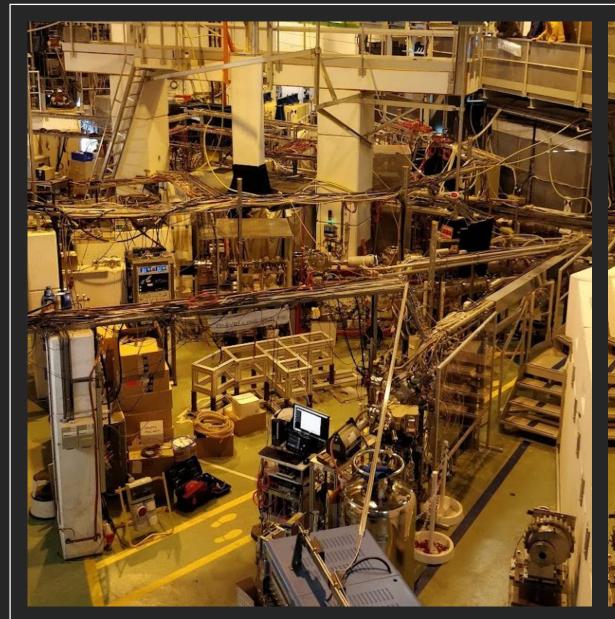
- 1-001 → Visitors room (130 m³)
- 310 m³/
- 6 people

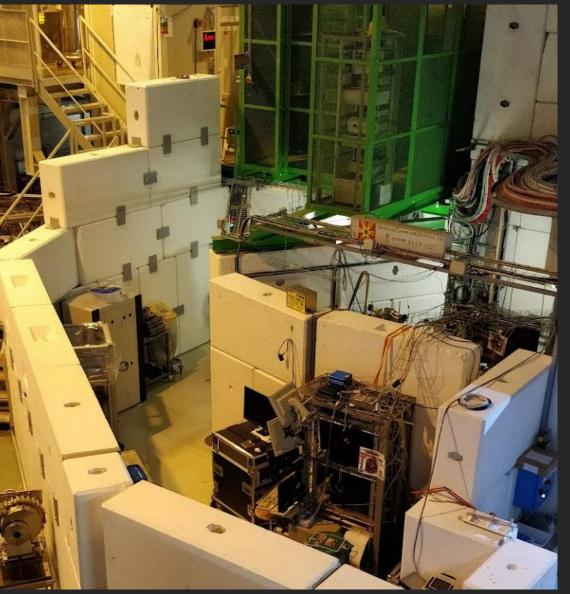
- 1-005 →
 ISOLDE DAQ
 (87 m³)
- 232 m³/h
- 4 people

- 1-009 → ISOLTRAP DAQ (44 m³)
- 176 m³/h
- 2 people

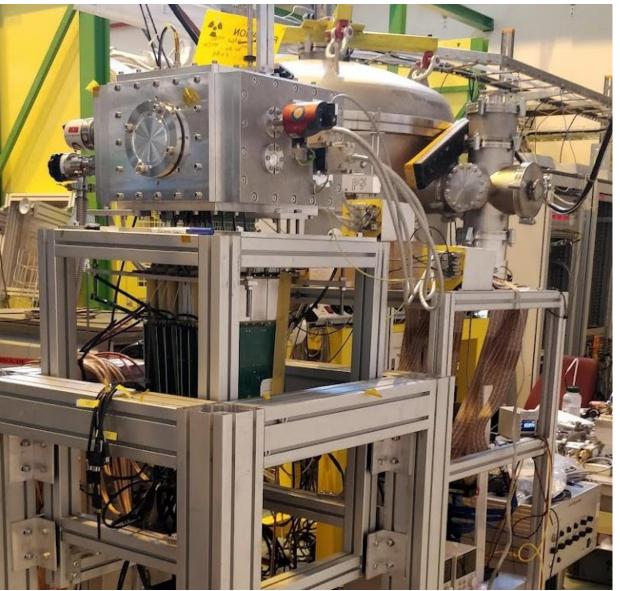

- 1-011 → xx (44 m³)
- Vent?
- 4 people

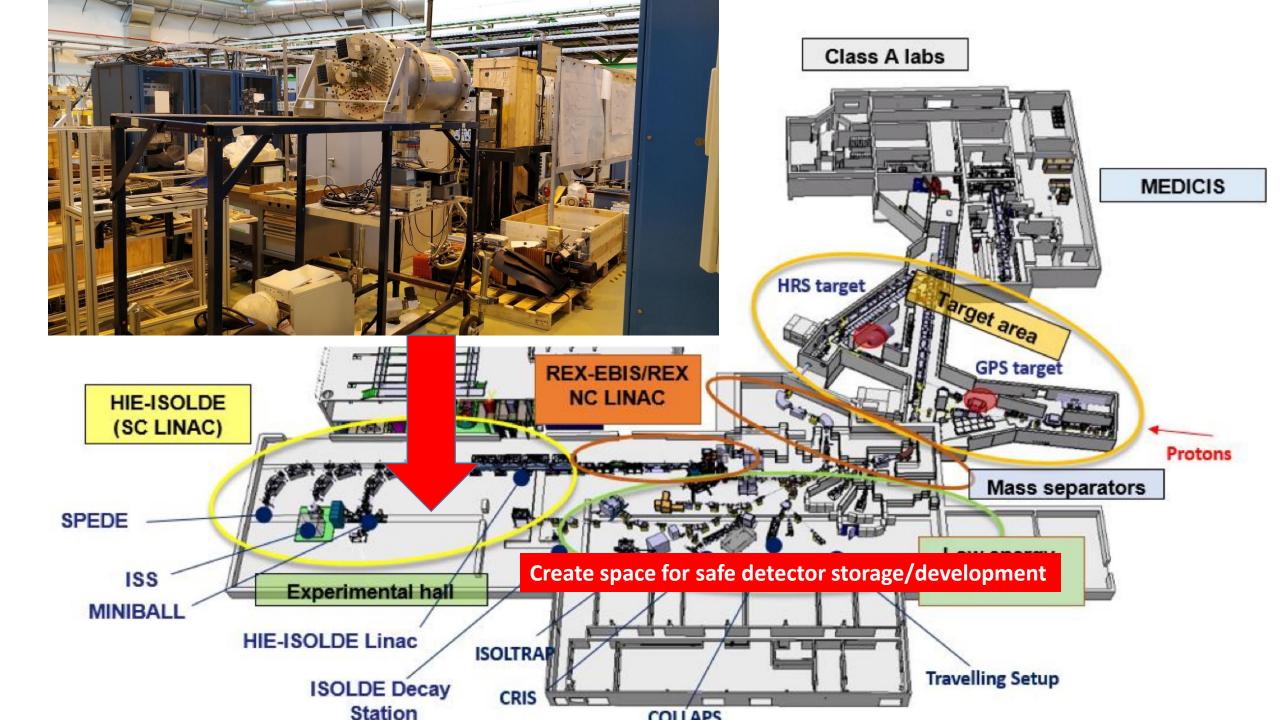
- 1-015 → RILIS DAQ (76 m³)
- 196 m³/h
- 4 people


Use old control room, DAQ and visitors space more optimally to allow for more distancing/zoom conferencing

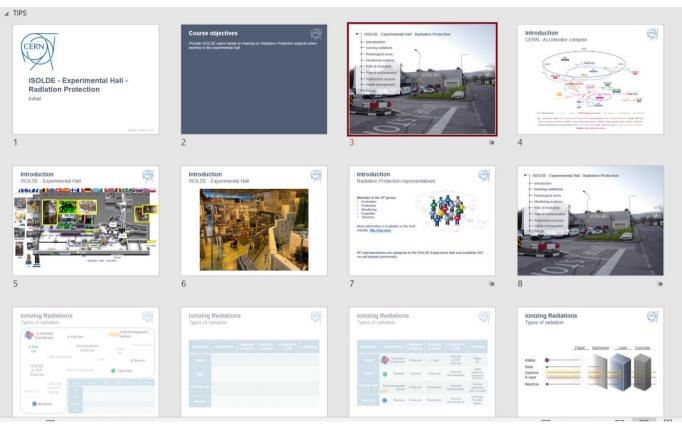


With OP, additional control terminals...OP working on means to allow monitoring e.g. for advanced users at home/office


MIRACLS installation in old NICOLE area



HIE ISOLDE: ionisation chamber and ACTAR


Training

In addition to the (ever-growing) number of online courses...

Hands-on RP and Electrical training

New from next week:

- dedicated weekly sessions of RP hands-on course. Local trainer (!) so scheduling should be easier for this course.
- New EP-wide electrical course for all users/staff who need to work in an experimental area.
- Both will take place on Tuesday but time has increased:
 - EP course 0830 till 1230
 - RP course 1400 till 1630

In LMS:

ISOLDE - Experimental Hall - Radiation Protection - Handling (Covid-19)

Electrical Safety - Working in EP experiments

Scheduling of safety courses has not been as straightforward as expected, limited numbers due to covid/unexpected cancellations and EP electrical course not yet available every week. *Ad hoc* sessions are available but not desired.

EDMS No: 2539300 v.1.0.0

EDMS No: 2539300 v.1.0.0

MEMORANDUM

Date : 2 June 2021

To : Department Heads, Technical Coordinators of Large Experiments

Cc : HSE-TMB, DSOs / LEXGLIMOSes + deputies

From : Safety Training section (HSE-TS-ST)

Via : Angela GOEHRING-CRINON (HSE-TS, Group Leader)

Subject : Safety Training programme "Electrical Safety - Working in EP experiments"

CERN Safety Training, in collaboration with CERN experts in electrical safety and representatives from the EP Department, has designed a new training course for physicists, engineers and technicians who will carry out a limited number of electrical tasks in CERN experimental areas, workshops and laboratories.

The aim of the course, titled "Electrical Safety - Working in EP experiments", is to raise awareness of the persons concerned regarding the specific risks that are present in the abovementioned installations and the associated mitigation measures and procedures.

The course only covers electrical and mechanical tasks listed below. Any task exceeding the scope of those mentioned below require specific electrical training and authorisations according to Safety Code C1¹.

Electrical tasks

- Connection, disconnection and operation of equipment at plug sockets up to 63A.
- Install and operate standardised rack mounted electrical equipment in relation to experimental apparatus at CERN within existing racks and the connection of modules and modular power supplies with standardised connectors.
- Performance of localised lock-out/tag-out for your own work and for equipment under your responsibility, where the point of isolation is a plug and socket outlet.
- Cable installation and termination in an electrical environment, up to 6 mm² for signal cabling and power distribution, and up to 16 mm² for earthing.
- Repair and removal operations on experimental apparatus, when the equipment is disconnected and unplugged. If the operation requires the removal of any housing or protective screens these must be replaced before the equipment is re-powered.
- Measurements on live equipment, which may only be taken in the course of normal operation as part of a written and verified operational procedure and risk assessment.

EDMS No: 2539300 v.1.0.0

MEMORANDUM

Annex 1 Authorisation to carry out specific activities in CERN experimental areas

This authorisation is prerequisite for Associated Members of the Personnel (MPAs¹) with status USER to carry out certain electrical and mechanical tasks in experimental areas at CERN. It must be signed by the authorized representative of the home institution².

I, the undersigned, herewith certify that the MPA identified hereafter
Cern ID of MPA (if already attributed):
Name (as in passport):
First name(s):
Date of birth (dd/mm/yyyy):
Name of home institution:
Country:
is employed by us and that, subject to the successful completion of the CERN Safety Training

is employed by us and that, subject to the successful completion of the CERN Safety Training course "Electrical Safety - Working at EP Experiments" by said MPA, he/she is authorised to carry out the following electrical and/or mechanical tasks at CERN.⁴

Electrical tasks

Connection, disconnection and operation of equipment at plug sockets up to 63 A.
☐ Install and operate standardised rack mounted electrical equipment in relation to experimental apparatus at CERN within existing racks and the connection of modules and modular power supplies with standardised connectors.
\square Performance of localised lock-out/tag-out for your own work and for equipment under your responsibility, where the point of isolation is a plug and socket outlet.
$\hfill \Box$ Cable installation and termination in an electrical environment, up to 6 mm 2 for signal cabling and power distribution, and up to 16 mm 2 for earthing.
☐ Repair and removal operations on experimental apparatus, when the equipment is

Connection disconnection and exercise of assignment at also applied up to 63 A

disconnected and unplugged. If the operation requires the removal of any housing or

protective screens these must be replaced before the equipment is re-powered.

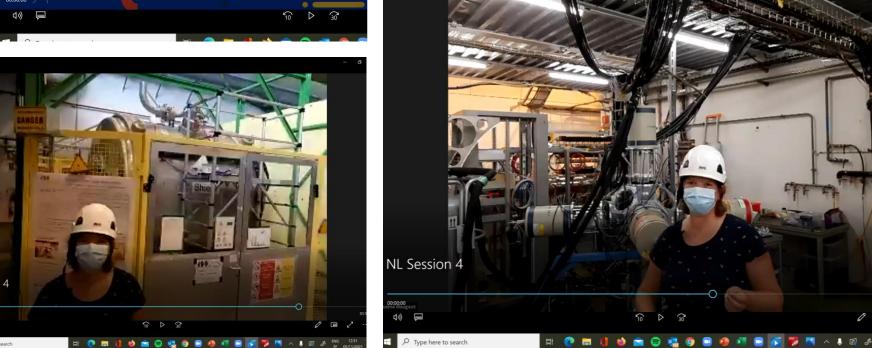
Also causing issues....

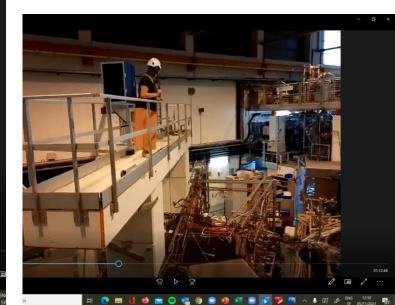
¹ The Associated Members of the Personnel are defined in CERNs Staff Rules and Regulations and the corresponding Administrative Circulars and include users, cooperation associates and visiting scientists.

Normally the team leader should sign the form as authorized representative.

³ <u>Link</u> to Safety Training catalogue, Electrical Safety domain.

⁴ Please indicate the tasks concerned.


Virtual visits now possible...


2021 Belgian High-School Students Internship Programme

25 september 2021 Virtuele ontdekkingsdag van CERN

- Isotope Separator OnLine Device
- A small facility with a big impact!
 - ◆ ~0.1% of the CERN budget
 - ♦ ~7% of the CERN scientists
 - ◆ ~50% of the CERN protons
- Run by international collaboration
- ◆ CERN, BE, DE, DK, FI, FR, GR, IT, NO, PL, RO, SK, ZA, ES, SE, UK
 - ~50 staff/students/fellows
 - → ~1500 users

Some recent publications...

LETTERS https://doi.org/10.1038/s41567-021-01326-9

Mass measurements of 99-101In challenge ab initio nuclear theory of the nuclide 100 Sn

M. Mougeot 61,2 A, D. Atanasov 2, J. Karthein 61,2,17, R. N. Wolf 3, P. Ascher4, K. Blaum 1, K, Chrysalidis 2, G, Hagen 5,6, J, D, Holt 7,8, W, J, Huang 1,18, G, R, Jansen 9, I, Kulikov 1,000 Yu. A. Litvinov 10, D. Lunnev 11, V. Manea 12, T. Miyagi, T. Papenbrock 5,6, L. Schweikhard 12, A. Schwenk 13,13,14, T. Steinsberger¹, S. R. Stroberg 15, Z. H. Sun^{5,6}, A. Welker 27, F. Wienholtz 21,213, S. G. Wilkins 102 and K. Zuber 16

The tin isotope 100Sn is of singular interest for nuclear structions. It is also the heaviest nucleus comprising protons and neutrons in equal numbers—a feature that enhances the contribution of the short-range proton-neutron pairing interaction and strongly influences its decay via the weak interacprove its doubly magic character but few have studied it from an ab initio theoretical perspective^{2,3}, and none of these has addressed the odd-proton neighbours, which are inherently more difficult to describe but crucial for a complete test of of the exotic odd-proton nuclide 100 In. the beta-decay daughter of 100Sn, and of 99In, with one proton less than 100Sn. We use advanced mass spectrometry techniques to measure 99In, which is produced at a rate of only a few ions per second, and to resolve the ground and isomeric states in 101In. The experimental results are compared with ab initio many-body calculations. The 100-fold improvement in precision of the 100 In mass value highlights a discrepancy in the atomic-mass values of 100Sn deduced from recent beta-decay results4,5.

The nuclear landscape is shaped by the underlying strong, weak and electromagnetic forces. The most salient features are the pillars surement, is shown in Fig. 1. The exotic indium isotopes were proof enhanced differential binding energy associated with closed-shell configurations, the best example of which is Z=50 (tin), featuring at CERN. A 1.4 GeV proton beam impinged on a thick lanthanum the largest number of β-stable isotopes (10) of all elements. These carbide target, producing a swath of neutron-deficient radioacnuclides lie between the closed neutron shells N=50 and 82, conferring particular importance to the nuclides 100Sn and 132Sn. The heated target, the indium atoms of interest were selectively ionized neutron-rich 132Sn can be synthesized in comfortable quantities6. This is not so for 100Sn, forming the limit of proton stability due to ISOLDE Resonant Ionization Laser Ion Source (RILIS)14. The ion its extreme neutron deficiency, only just staving off the Coulomb repulsion of the 50 protons. This rare combination of like closed shells causes 100Sn to have one of the strongest beta transitions and makes it the heaviest self-conjugate nucleus on the nuclear chart.

Nuclei in the immediate vicinity of 100Sn offer important insight ture due to its closed-shell proton and neutron configura- for understanding the single-neutron and proton states in this region and constitute an excellent proxy for the study of 100Sn itself. However, experiments have so far only been feasible with in-beam gamma-ray spectroscopy at fragmentation facilities^{4,5,7-10}. By direct determination of the nuclear binding energy, high-precision tion. Decay studies in the region of 100Sn have attempted to atomic-mass measurements provide a crucial model-independent probe of the structural evolution of exotic nuclei. Precision mass measurements are traditionally performed at isotope separation online (ISOL) facilities; however, the production of medium-mass, neutron-deficient nuclides at such facilities is prohibitively difnuclear forces. Here we present direct mass measurements ficult, explaining the lack of accurate mass values in the region. Measurements performed at the FRS Ion Catcher at GSI11 and the Cooler-Storage experimental Ring (CSRe) in Langzhou¹² (both high-energy, heavy-ion fragmentation facilities) recently extended direct mass measurements to the 101 In ground and isomeric states. However, the 100 In mass value is still constrained 63% indirectly through its beta-decay link to 100Cd (ref. 13).

Thus, the first experimental challenge overcome in this work was the production and separation of the successfully studied 99,100,101g,101m In states. A detailed schematic of the necessary stages, from radioactive ion beam production to beam purification, preparation and meaduced at the Isotope Separator On Line Device (ISOLDE) located tive species of various chemical elements. After diffusion from the using a two-step resonance laser ionization scheme provided by the beam was extracted from the source and accelerated to an energy of 40 keV. The mass number (A = Z + N) of interest was selected using ISOLDE's high-resolution dipole mass separator and delivered to the ISOLTRAP online mass spectrometer15.

Max-Planck-Institut für Kernphysik, Heidelberg, Germany, 2CERN, Geneva, Switzerland, 3ARC Centre of Excellence for Engineered Quantum Systems, School of Physics. The University of Sydney, Sydney, New South Wales, Australia, "Centre d'Etudes Nucléaires de Bordeaux Gradignan, UMR 5797 CNRS/ IN2P3, Université de Bordeaux, Gradignan, France. Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA. Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA. 7TRIUMF, Vancouver, British Columbia, Canada. *Department of Physics, McGill University, Montreal, Quebec, Canada. National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA. GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany. "CNRS/IN2P3, IJCLab, Université Paris-Saclay, Orsay, France. "Institut für Physik, Universität Greifswald, Greifswald, Germany. Department of Physics, Technische Universität Darmstadt, Darmstadt, Germany. ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany. 15 Physics Department, University of Washington, Seattle, WA, USA. 16 Technische Universität Dresden, Dresden, Germany. 17 Present address: Massachusetts Institute of Technology, Cambridge, MA, USA. 18 Present address: Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China. Se-mail: maxime.mougeot@cern.ch

NATURE PHYSICS | VOL 17 | OCTOBER 2021 | 1099-1103 | www.nature.com/naturephysics

PHYSICAL REVIEW LETTERS 127, 192501 (2021)

Large Shape Staggering in Neutron-Deficient Bi Isotopes

A. Barzakho. 1, A. N. Andreyev, 3, C. Raison, J. G. Cubiss, P. Van Duppen, S. Péru, S. Hilaire, S. Goriely, B. Andel, S. Antalic, M. Al Monthery, J. C. Berengut, J. Bieron, M. L. Bissell, A. Borschevsky, K. Chrysalidis, 12,1 T. E. Cocolios, ⁴ T. Day Goodacre, ^{14,12,10} J.-P. Dognon, ¹⁵ M. Elantkowska, ¹⁶ E. Eliav, ¹⁷ G. J. Farooq-Smith, ^{4,†} D. V. Fedorov, V. N. Fedosseev, 12 L. P. Gaffney, 18,2 R. F. Garcia Ruiz, 10,8 M. Godefroid, 19 C. Granados, 12,4 R. D. Harding, ^{2,12} R. Heinke, ^{13,1} M. Huyse, ⁴ J. Karls, ^{12,20} P. Larmonier, ¹² J. G. Li (李冀光), ²¹ K. M. Lynch, ¹² D. E. Maison, ¹²² B. A. Marsh, ¹² P. Molkanov, ¹ P. Mosat, ⁷ A. V. Oleynichenko, ¹²³ V. Panteleev, ¹ P. Pyykkö, ²⁴ M. L. Reitsma, 11 K. Rezynkina, 4 R. E. Rossel, 12 S. Rothe, 12 J. Ruczkowski, 16 S. Schiffmann, 19 C. Seiffert, 12 M. D. Seliverstov, S. Sels, L. V. Skripnikov, M. Stryjczyk, D. Studer, M. Verlinde, S. Wilman, 16 and A. V. Zaitsevskii 1,2:

1 Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, 188300 Gatchina, Russia ²Department of Physics, University of York, York YO10 5DD, United Kingdom ³Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Ibaraki 319-1195, Japan ⁴KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium ⁵Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France ⁶Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia School of Physics, University of New South Wales, Sydney NSW 2052, Australia

PHYSICAL REVIEW LETTERS 127, 192501 (2021)

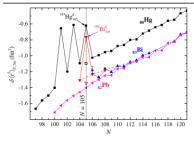


FIG. 2. Changes in the mean-square charge radii for Bi (downward triangles, present work; upward triangles, Refs. [27,55,56]), Pb (leftward triangles, Refs. [5,57,58]), and Hg (squares, Refs. [10-12]) isotopes. Full and hollow symboles label the gs's and isomers, respectively. Data for each chain are shifted along the Y axis to improve visibility. Red dashed line connects the data for the even-N 9/2- Bi gs's to demonstrate deviation from the Pb trend

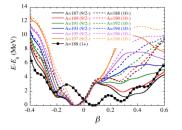


FIG. 3. HFB PESs obtained by blocking the first 9/2- qp in odd-A bismuth isotopes (solid lines), 10- in even-A ones (dashed lines), and 1^+ in ¹⁸⁸Bi (squares). E_0 is the minimal energy of the corresponding PES. For each PES, at least one of the minima has a magnetic moment compatible with experimental data. For 9/2 and 10^- states it is a minimum at $\beta \approx -0.07$, whereas for 1^+ state in ¹⁸⁸Bi it is a minimum at $\beta \approx +0.28$.

The further selection of the proper states was made by constraining the calculated magnetic moment to the exper-

PHYSICAL REVIEW LETTERS 126, 032502 (2021)

Laser Spectroscopy of Neutron-Rich 207,208Hg Isotopes: Illuminating the Kink and Odd-Even Staggering in Charge Radii across the N = 126 Shell Closure

T. Day Goodacre[®], ^{1,2,3,*} A. V. Afanasjev, ⁴ A. E. Barzakh, ⁵ B. A. Marsh, ² S. Sels, ^{2,6} P. Ring, ⁷ H. Nakada, ⁸ A. N. Andreyev, 9,10 P. Van Duppen, N. A. Althubiti, 1,11 B. Andel, 6,12 D. Atanasov, 13,† J. Billowes, K. Blaum, 13 T. E. Cocolios, 1.6 J. G. Cubiss, G. J. Farooq-Smith, 1.6 D. V. Fedorov, V. N. Fedosseev, K. T. Flanagan, 1 L. P. Gaffney, 6,15.‡ L. Ghys, 6,16 M. Huyse, 6 S. Kreim, 13,2 D. Lunney, 17.8 K. M. Lynch, 1.2 V. Manea, 13,8 Y. Martinez Palenzuela, 6,2 P. L. Molkanov, M. Rosenbusch, 18, R. E. Rossel, 2,19 S. Rothe, L. Schweikhard, 18 M. D. Seliverstov, P. Spagnoletti, S. C. Van Beveren, M. Veinhard, E. Verstraelen, A. Welker, 200 K. Wendt, F. Wienholtz, R. N. Wolf, 13,18,** A. Zadvornaya, and K. Zuber.

The University of Manchester, School of Physics and Astronomy, Oxford Road, Manchester M13 9PL, United Kingdom ²CERN, CH-1211 Geneva 23, Switzerland ³TRIUMF, Vancouver V6T 2A3, Canada

⁴Department of Physics and Astronomy Mississippi State University Mississippi 39762 USA Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina 188300, Russia ⁶KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium Fakultät für Physik, Technische Universität München, D-85748 Garching, Germany *Department of Physics, Graduate School of Science, Chiba University, Yayoi-cho, 1-33, Inage, Chiba 263-8522, Japan Department of Physics, University of York, York YO10 5DD, United Kingdom ¹⁰Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai-mura, Japan ¹¹Physics Department, Faculty of Science, Jouf University, Aljouf P.O. Box 2014, Saudi Arabia ¹²Department of Nuclear Physics and Biophysics, Comenius University in Bratislava, 84248 Bratislava, Slovakia ¹³Max-Planck-Institut f
ür Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany 14 The Photon Science Institute, The University of Manchester, Manchester M13 9PL, United Kingdom ¹⁵School of Computing, Engineering, and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, United Kingdom ¹⁶Belgian Nuclear Research Center SCK CEN, Boeretang 200, B-2400 Mol, Belgium

CSNSM-IN2P3, Université de Paris Sud, 91405 Orsay, France ¹⁸Universität Greifswald, Institut für Physik, 17487 Greifswald, Germany ¹⁹Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany ²⁰Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden 01069, Germany

(Received 24 July 2020; revised 17 November 2020; accepted 15 December 2020; published 22 January 2021)

The mean-square charge radii of 207,208 Hg (Z=80, N=127, 128) have been studied for the first time