

NASA/JPL-Caltech

The Mars 2020 Perseverance **Rover Mission** in Jezero **Crater**, Mars Jesse Tarnas

© 2021 California Institute of Technology. Government sponsorship acknowledged.

NASA/JPL-Caltech/MSSS/Kevin Gill

A Notional Three-Mission Mars Sample Return Campaign

Sample Collection (Mars 2020)

Mars Ascent Vehicle (MAV) launches Orbiting Sample (OS)

Mars Orbiter captures OS and brings it back to Earth

Pre-Decisional Information – For Planning and Discussion Purposes Only

Martian meteorites

Mars image credit: NASA Meteorite Image Credit: David Weir, Meteorite Studies

Regolith Breccia

Chassignite

Nakhlite

S

9 jpl.nasa.gov

Perseverance loaded into heat shield

Rover, heat shield, cruise stage

URS CL#20-4730

Rover, heat shield, cruise stage

URS CL#20-4730

Transport to rocket

PERSEVERANCE

URS CL#20-4730

Launched July 30, 2020

Venus .

Mercury

Venus

Mercury

Mars 2020

Mercury

Venus

Mars 2020

PERSEVERANCE

Landfall on Mars

Welcome to Jezero Crater

Octavia E. Butler Landing

NASA/JPL

Ancient Mars: Surface Liquid Water

Modern Mars

Mars ~ 3.6 billion years ago (?)

NASA Scientific Visualization Studio

Jezero crater, a former martian lake

CTX Mosaic by The Murray Lab, Caltech Dickson et al. (2019), 49th LPSC

Jezero crater, a former martian lake

CTX Mosaic by The Murray Lab, Caltech Dickson et al. (2019), 49th LPSC

Western delta Northern delta

Units mapped by Goudge et al. (2015), *JGR: Planets*

9 km

NASA/JPL/University of Arizona

Units mapped by Goudge et al. (2015), *JGR: Planets*

160 km

Modern Stromatolites: Shark Bay

Photo: K. Farley

River Deltas Are Habitable Environments

Alaska runoff, NOAA

Analyzing the delta from the ground

Seeing from afar

Beautiful bedrock exposures

Characterizing past environments on Mars from afar

NASA/JPL/LANL/CNES/IRAP

Characterizing past environments on Mars from afar

NASA/JPL/LANL/CNES/IRAP

1

NASA/JPL/University of Arizona

2 km

Stack et al. (2020), Space Sci. Rev.

NASA/JPL/University of Arizona

2 km

Helicopter scouting shows limited traversibility in Séítah

MARS

PERSEVERANCE

Stack et al. (2020), Space Sci. Rev.

NASA/JPL/University of Arizona

2 km

Séítah shows geologically intruiging layered rocks

Stack et al. (2020), Space Sci. Rev.

NASA/JPL/University of Arizona

2 km

Searching for a sampling site

NASA/JPL/University of Arizona

100m

AARS

PERSEVERANCE

Searching for a sampling site

NASA/JPL/ASU

Searching for a sampling site

Arm mobility tests at Octavia E. Butler Landing Site

0

NASA/JPL/ASU

Abrading bit

NASA/JPL/ASU

Abrading bit

Abraded rock patch

Getting an upclose look using X-ray Fluorescence (PIXL) and Raman Spectroscopy (SHERLOC)

Drilling bit

Abraded patch next to borehole

Surprise! An empty sample tube

Disintegrated remains of the rock core

MARS

PER

SEVERANCE

Sampling site 2: the Citadel

NASA/JPL/University of Arizona

100m

0

Abraded rock patch: round 2

Abraded patch (covered by tailings) and borehole

Success! A rock core in the sample tube!

Flight sample tube handling during TVAC testing

Paving the path for human exploration

Ingenuity helicopter: a mobile martian scout

Ingenuity's location on the ride to Mars

Ingenuity's location on the ride to Mars

Swinging down to the surface

NASA/JPL

Rotor blade testing

and in

menter

Ingenuity covers and maps difficult terrain

Photo of Perseverance by Ingenuity

MARS

PERSEVERANCE

Photo of Ingenuity by Perseverance

NASA/JPL/ASU

Martian helicopters can be used for future human and robotic exploration

Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) makes O_2 from the CO_2 in the martian atmosphere

Dust is everywhere!

NASA/JPL/MSSS

Observations of dust constrain the processes controlling martian weather

6

Martian sunset captured by the Curiosity rover

Perseverance rover mission: first 200 sols

Science highlights:

- Collection of the first rock and atmospheric samples for return to Earth
- 2. Confirmation of a paleolacustrine environment in Jezero crater
- 3. Characterization of multiple deltaic units, constraining past aqueous environments on Mars
- 4. Investigation of multiple crater floor units, leading towards determination of their origins
- 5. Observations to constrain Mars dust cycling and weather patterns

Perseverance rover mission: first 200 sols

Exploration highlights:

- First flight by an aircraft off Earth, unlocking new exploration strategies for robotic and human space missions
- 2. First in-situ production of oxygen from the martian atmosphere (MOXIE)
- 3. First footage captured of landing on Mars
- 4. Multiple records set for autonomous navigation driving distance
- 5. Characterization of seasonal dust cycling and dust devil activity, which affects power production by solar panels

jpl.nasa.gov