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Large-N double scaling limit in O(2N) WF.

• Consider the O(2N) Wilson-Fischer CFT in on R × S2.

• Introduce a chemical potential for the charges Qi of O(2)N ⊂ O(2N).

• Define a double-scaling limit as follows:

Q :=
N∑

i=1
Qi, Q, N → ∞ Q/2N = const.

[Gaumé et al. ’17, ’19]

[ϵ-expansion: Badel et al. ’19, Antipin ’20, ’21]

• The CFT free energy computes a heavy operator scaling dimension:

F(Q) = ∆(Q)/rS2 for the operator ϕ{i1 ...ϕiQ} ∼ φQ

[Giombi, Hyman ’20]

Nicola Andrea Dondi Large Charge aux Diablerets 3/13



Large-N double scaling limit in O(2N) WF.

• Consider the O(2N) Wilson-Fischer CFT in on R × S2.

• Introduce a chemical potential for the charges Qi of O(2)N ⊂ O(2N).

• Define a double-scaling limit as follows:

Q :=
N∑

i=1
Qi, Q, N → ∞ Q/2N = const.

[Gaumé et al. ’17, ’19]

[ϵ-expansion: Badel et al. ’19, Antipin ’20, ’21]

• The CFT free energy computes a heavy operator scaling dimension:

F(Q) = ∆(Q)/rS2 for the operator ϕ{i1 ...ϕiQ} ∼ φQ

[Giombi, Hyman ’20]

Nicola Andrea Dondi Large Charge aux Diablerets 3/13



Large-N double scaling limit in O(2N) WF.

• Consider the O(2N) Wilson-Fischer CFT in on R × S2.

• Introduce a chemical potential for the charges Qi of O(2)N ⊂ O(2N).

• Define a double-scaling limit as follows:

Q :=
N∑

i=1
Qi, Q, N → ∞ Q/2N = const.

[Gaumé et al. ’17, ’19]

[ϵ-expansion: Badel et al. ’19, Antipin ’20, ’21]

• The CFT free energy computes a heavy operator scaling dimension:

F(Q) = ∆(Q)/rS2 for the operator ϕ{i1 ...ϕiQ} ∼ φQ

[Giombi, Hyman ’20]

Nicola Andrea Dondi Large Charge aux Diablerets 3/13



Large-N double scaling limit in O(2N) WF.

• Consider the O(2N) Wilson-Fischer CFT in on R × S2.

• Introduce a chemical potential for the charges Qi of O(2)N ⊂ O(2N).

• Define a double-scaling limit as follows:

Q :=
N∑

i=1
Qi, Q, N → ∞ Q/2N = const.

[Gaumé et al. ’17, ’19]

[ϵ-expansion: Badel et al. ’19, Antipin ’20, ’21]

• The CFT free energy computes a heavy operator scaling dimension:

F(Q) = ∆(Q)/rS2 for the operator ϕ{i1 ...ϕiQ} ∼ φQ

[Giombi, Hyman ’20]

Nicola Andrea Dondi Large Charge aux Diablerets 3/13



Scaling dimension for the operator φQ
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• Two regimes, different saddles contributing.

• The non-trivial Q/2N ≫ 1 behaviour is absent in the CFTUV (free boson).

• Two regimes are connected: information contained in the growth of bn, cn.

• On R × S2 these have interpretations in term of SSB, gapped GB ecc.
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Large-order growth of ∆(Q)
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• Regime Q/2N ≫ 1: growth is cn ∼ (n!)2 (EFT perturbation theory).

• Regime Q/2N ≪ 1: growth is bn ∼ nα (Large-N perturbation theory).

• Non-perturbative corrections associated to this growth?
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Thermodynamics on R × S2

Critical action for the O(2N) theory:

SR×S2 [φ, σ] =
∫
R×S2

d3x

{
|D(µ)φ|2 +

(
σ + 1

4rS2

)
|φ|2

}

Auxiliary field σ ∼ |φ|2

Canonical: (Q, V, T )

Z(c)
R×S2 = e−β(∆/rS2 )

Grand canonical: (µ, V, T )

Z(gc)
R×S2 = e−βΩ

Legendre transform µ ↔ Q = Ω′(µ)

[More in this context: Moser, Orlando, Reffert ’21]
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Grand potential and BEC phase

• The Large-N result for the gran potential is

Ω
2N

= −
(

µ2 − 1
4

− ⟨σ⟩
)

|⟨φ⟩|2

2N
+

∞∑
ℓ=0

(2ℓ + 1)
√

ℓ(ℓ + 1) + 1
4

+ ⟨σ⟩

• Only SSB configurations can carry a global charge Q:

Q = −∂Ω
∂µ

∝ µ|⟨φ⟩|2 ̸= 0

• This is a non-abelian version of Bose-Einstein condensation.

⟨φ⟩ ∼
√

N : O(2N) → O(2N − 1)
small-µ: symmetry restoration
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Non-perturbative contributions - I

• A saddle carrying charge Q has potential and field vev given by

Ω(µ)
2N

=
∞∑

ℓ=0

(2ℓ + 1)
√

ℓ(ℓ + 1) + µ2

|⟨φ⟩|2

2N
= − 1

8π

∞∑
ℓ=0

(2ℓ + 1)√
ℓ(ℓ + 1) + µ2

• Using ζ-function regularisation, we can use a Mellin representation as

Ω(µ)
2N

= 1
Γ(s)

∫ ∞

0
dt ts−1e−tµ2

Tr
{

et∆S2
}∣∣∣∣

s=−1/2

• The heat trace is the simplest object to run a Resurgence analysis:
◦ Grows as ∼ n! expanded at t → 0+ =⇒ non-perturbative ambiguities.
◦ The Borel transform can be computed exactly.
◦ There is an exact integral formula we can find via Borel-Laplace summation.
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Non-perturbative contributions - II

Ω(µ) ⊃ e−2π|k|µ ⇐⇒ ∆(Q) ⊃ e−2π|k|
√

Q
2N , k ∈ Z

• These are of order ∼ 10−2 at Q ∼ 1, N = 1. Compatible with MC result
(first 3 terms fit with relative error within 10−2).

• The large-order analysis is not sensitive to an overall C-coefficients σk

(Transseries coefficients).

• Determine σk (modulo Stokes jumps):

{
Selberg-type trace formulas.
Worldline path integral.
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Worldline path integral: classification of saddles

⟨y|e−t∆S2 |x⟩ ≃ =
∫ y(t)=y

x(0)=x

Dxµ e
− 1

4

∫ t

0
dτ gµν (x)ẋµẋν

[Strassler ’92, Schubert ’96 (review) ... Bastianelli ’05]

Transseries ↔ saddle-point approximation around (closed) S2 geodesics.
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Transseries for heat trace

Tr
{

et∆S2
}

−−−→
t→0

1
t

{
1 + ...

}
±i

(π

t

) 3
2 ∑

k ̸=0

(−1)k+1|k| e− (2πk)2
4t

{
1 + ...

}

Negative modes Zero mode Positive modes
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Future directions

• Under the assumptions:
◦ ∆(Q) has an asymptotic perturbative expansion for any N .
◦ The leading singularity is determined via saddle of a WL integral for a particle

with mass m ∼ µ (Gapped goldstone? [Nicolis, Piazza ’13... ] radial modes? [Grassi,

Komargodski, Tizzano ’19] )
◦ There is a scale invariant EFT with cutoff Λ ∼

√
Q/rS2

∆(Q) ⊃ e−c(2πrS2 )×Λ.

(exception: Heavy monopoles? [Antipin et at. ’22, Pufu, Chester ...] )

• Heavy-Light-Heavy OPE coefficients involving φQ are expected to contain
similar exponential corrections.

• Cooper pairs BEC formation in interacting fermionic large-N CFTs.

Nicola Andrea Dondi Large Charge aux Diablerets 12/13



Future directions

• Under the assumptions:
◦ ∆(Q) has an asymptotic perturbative expansion for any N .
◦ The leading singularity is determined via saddle of a WL integral for a particle

with mass m ∼ µ (Gapped goldstone? [Nicolis, Piazza ’13... ] radial modes? [Grassi,

Komargodski, Tizzano ’19] )
◦ There is a scale invariant EFT with cutoff Λ ∼

√
Q/rS2

∆(Q) ⊃ e−c(2πrS2 )×Λ.

(exception: Heavy monopoles? [Antipin et at. ’22, Pufu, Chester ...] )

• Heavy-Light-Heavy OPE coefficients involving φQ are expected to contain
similar exponential corrections.

• Cooper pairs BEC formation in interacting fermionic large-N CFTs.

Nicola Andrea Dondi Large Charge aux Diablerets 12/13



Future directions

• Under the assumptions:
◦ ∆(Q) has an asymptotic perturbative expansion for any N .
◦ The leading singularity is determined via saddle of a WL integral for a particle

with mass m ∼ µ (Gapped goldstone? [Nicolis, Piazza ’13... ] radial modes? [Grassi,

Komargodski, Tizzano ’19] )
◦ There is a scale invariant EFT with cutoff Λ ∼

√
Q/rS2

∆(Q) ⊃ e−c(2πrS2 )×Λ.

(exception: Heavy monopoles? [Antipin et at. ’22, Pufu, Chester ...] )

• Heavy-Light-Heavy OPE coefficients involving φQ are expected to contain
similar exponential corrections.

• Cooper pairs BEC formation in interacting fermionic large-N CFTs.

Nicola Andrea Dondi Large Charge aux Diablerets 12/13



Future directions

• Under the assumptions:
◦ ∆(Q) has an asymptotic perturbative expansion for any N .
◦ The leading singularity is determined via saddle of a WL integral for a particle

with mass m ∼ µ (Gapped goldstone? [Nicolis, Piazza ’13... ] radial modes? [Grassi,

Komargodski, Tizzano ’19] )
◦ There is a scale invariant EFT with cutoff Λ ∼

√
Q/rS2

∆(Q) ⊃ e−c(2πrS2 )×Λ.

(exception: Heavy monopoles? [Antipin et at. ’22, Pufu, Chester ...] )

• Heavy-Light-Heavy OPE coefficients involving φQ are expected to contain
similar exponential corrections.

• Cooper pairs BEC formation in interacting fermionic large-N CFTs.

Nicola Andrea Dondi Large Charge aux Diablerets 12/13



Summary and conclusion

In the double-scaling limit of the O(2N), the expansion of ∆(Q) is:

• asymptotic for Q/(2N) ≫ 1, with factorial growth ∼ (n!)2.

• Contains exponential corrections given by Worldline instantons.

• These are small also for (reasonably) low Q, N . This seems to suggest that
the Q/2N ≫ 1 regime can be extrapolated also to light operators.

Thank you for your attention!
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