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Introduction

Long-range O(N) model in R?

S [ty 2 2°T(45)

o=y O Ay

Fifty years old

[Fisher, Ma, Nickel ‘72, Sak “73, Sak “77]

and has been discussed in many recent papers

[Paulos et. al. 1509.00008, Behan et. al. 1703.03430+1703.05325, Chai et. al.
2107.08052,...]

Short-range: spins have nearest-neighbor interactions
> Kinetic term (9,¢7)?

Long-range: spin interactions behave as 1/r?+s
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Introduction

Long-range O(N) model in R? with quartic interaction
I I 2sF(d+s
/ddxdd ¢ ¢)|ds_s) %/ddx(gblqbl(x))Q, C = 2 )

The scaling dimension of the fundamental fields is Ay = dT
» s < d/2: Gaussian fixed point
— No anomalous dimension

» d/2 < s < s,: Nontrivial long-range fixed points
— Ay still gets no anomalous dimension

> s>5,=2— 2’y£R, model is described by usual short-range
O(N) fixed point
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The setup

Long-range O(N) model in R? with quartic interaction
o1(@)d'(y) g
/d%dd ’d+s /dd (¢'¢' ()
We study operators with charge j under the global O(N) symmetry

= (!

I'is a null auxiliary complex vector

where u

Look at scaling dimensions A; of O;:

(05(@1)0s () = (udub) S
iy’
A =~ el 0g(0;(21)0;(x2)
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The setup

Double-scaling limit
> Take j — 0o, N — 0o, keep j = j/N finite
» Small j: ordinary 1/N perturbation theory

» j same order as N: new semiclassical saddle point emerges
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Summary of results

In the limit of large j, we find a very different result for scaling dimensions in
long-range O(N) model compared to short-range:

Aj Short-Range O(N) Long-Range O(N)

Small j limit | N (452} +0(j%)) N (42 +0(%)

Large J limit N(jﬁAl(d)+5ﬁA2(d)) N(%3+A(d,s)3dis+...)

where the short-range scaling dimensions were computed in [Alvarez-Gaume,
Orlando, Reffert 1909.02571; Giombi, Hyman 2011.11622]
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Saddle point approximation

Apply usual large N procedure of introducing a
Hubbard-Stratonovich auxiliary field o and dropping the % term in

(ZSI

Green's function G(z1,z2;0) of fundamental operators with
respect to this action is

G (xy, 20;0) = /D¢¢I(x1)¢‘](fﬂ2)€_s
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Saddle point approximation

Two-point function of large charge operators (after j! Wick
contractions) is

(0j(21)0;(w2)) = (ujug)’ /D fle)?;"ja o)l

= (u{ué)jj! /Dae*NSeff
~ NefNSeff(U*)

where the effective action is
Seff = 110 det ¢ + o (x)6%(z — )] — J1og(G(x1,z9;0))
off = 5 g |z — y|@Fs 4 Jlog 1,223

with j =j/N
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Saddle point approximation

Extremizing Sefr with respect to o gives the saddle point equation
2jG (21, 7;0.) G2, 0504) = =G (w,250.)G(21, 223 02

Strategy to solve the saddle

» Expand G(zx,y;0.) in powers of o, and obtain integral
recursive relation for Green's function

» Plug in reasonable ansatz for the profile of o,(x) at the saddle
point

P> Use technology of fishnet integrals to turn a complicated
iterative series of integrals into a single integral and single sum
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Green’s function

The Green's function can be defined as
C
/ddx' (WS + o, (2)0%(x — x')) G’ y;04) = 6%z — )
Expand G(z,y,0.) in powers of o*
G=GO4+aW4a? 4
Plug into definition
C
J e R G @ i) = ()6 i)

T — x/|d+s

11/39



Green's function

Leading order result is the usual two-point function without any
large charge operators

Co

r (d2
ey T

B 257T2F(

)

Get the result for order L Green’s function by iteratively applying
the above result

GO (x,y) =

N|®w \_/

GL(xayaO-* = <H/d ZkO' Zk; (Zk7zk+1)> GO(:E,Zl)

L (l}_[l/ddzka*(zk ) (H |2j41 — 25 |d s)

where 20 =y, 2141 =@
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Green’s function

To proceed, use ansatz for profile of o(z) at the saddle point:

. Do o(z)e NSk
ou(@i T, 32) = 1\}51100 . fDU(e—)NSefr
_ iy (9i(@1w)O(x2, us)o ()
= 11im
N—o0 <Oj(£61,U1)Oj(ﬂ?2,U2)>

Noting A, = s+ O(1/N), conformal symmetry requires

|21 — w2|*

7 ) = Ty — 2T
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Green's function

Plug ansatz into expression for G(£)

L L
G (z,y,0.) = (-1)* (H /ddzka*(zk)> 11 %
k=1 j= %l

= Cy(—Cpcolr1 — x2|S)L

L J .
d Zk 1
X | | 1
(kl/ |2k — 15| 2k — 332|8> (H |zj41 — zjd_s)

j=0
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Green’s function

The integral

L d L
d Zk 1
I pu— / - I
<kI_Il |2k — @12k — x2\5> J-I:IO |2j41 — 2|47

was computed in [Derkachov, Ferrando, Olivucci 2108.12620] in the very
different context of fishnet Feynman integrals
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Green's function

The result can be expressed in terms of Gegenbauer polynomials

d—2

5_ T — T . To — T1
Tz —x1]? |we — 21?
_ Yy—x T2 — X1
F( = i d—2 "oy —aP T e
o M) s (0
(€l = r 2" (5

X Cz(%) (éu,?,) /27r <7§72> (Qu(u) ™!

where Q;(u) is a ratio of Gamma functions
r¢)r (d s+2i zu) r (% + zu)
" () (-
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Green's function
The result for the Lth Green's function is then

GL ( C¢CU) F (l + )
M—md%—mwﬂwm Trr

(d52) du (€ )y
C ==
e mw 2 QJ

The full Green’s function is just the sum over L:

o=t TUE) s ao

_ d— _ d
A e () s

Lo (£ & Qu(w)
€ Qwﬂ/ <w>1+%wwwm>
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Solving the saddle

As promised, we have G(z,y;0.) in terms of a single integral and
single sum

o
G(m,y;a*):Z(...)/du(...)
1=0
Right now o, is a just a function of x, x1, and xo taking the form

|1 — 22

T ) = e e — T

We want to find the ¢, such that the saddle point equation is
satisfied.

2jG (a1, 2;04)G (w2, 1504) = —G(2, 250,)G (21, 723 04
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Green's function in various limits

We evaluate the u—integral by closing the contour in the upper
half plane and performing a sum over residues

Glo.y: 00) :i / <E2) Qi(u)

= 772 1+ C¢007Td/2Ql(u)

=l mzlestes[(n2> <1/Qz<u>+c¢cgﬁd/2>]

Poles occur when the denominator is zero:

742 —
Q( )
F<d+s+2l ) <d+s+2l +w) o
F(d S+2[+zu) ( —iu)+25_0

19/39



Green's function in various limits

The

are on the imaginary axis, and we parametrize them as u = %
(with u € R+ for the UHP)

30
2/

1

Im[u] 0

-1

-2

-3

zeroes of

F(W—iu)r‘(w-ﬂ'u) Co

F(#+iu)F(#—iu) 28

Co
+

2 QW

forc,=10,s=18,d=3

-3 -2 -1 0 1 2

G, 1
2 Qum

20¢
10f
—_10
-20¢
_30t
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Green's function in various limits

In terms of u = iu/2, the u—integral is

I3
2

1

o _
G(x,y;04) :Z Z Res ( )
=0 poles
Taking the limit £ — oo or 7 — 0 greatly simplifies the result
» Sum is dominated by smallest 1 pole.

» Smallest j pole corresponds to the [ = 0 term of the sum
= neglect [ > 0 terms

(1/Ql(iu/2) + Cyeomd

o)
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Green's function in various limits

We obtain the following results for the 3 limits:

d—s

r (%) Sy — (o) =55
o , y — T2
G(x1,y,07) = 27Td/2|y _ x1|d—s'u (¢o) <|x2 —z1|ly — $1|)

d—s

r(s) e | e
G )= (e < : )
(@, x2,0%) 27Td/2‘x_x2|d—s’u(c ) |zo — 21|z — 22|

G(z1,20,0") = "(eg) | ——
( 1,42 ) 27Td/2|1'2—l‘1|d_slu( U)<|I2—I1’2>
where § is a regulator denoting x — 1 and/or y — 2
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Green's function in coincident point limit

The coincident point limit doesn't simplify as much as the other 3
limits, so we leave it as

2O (12 e — a2+ d - 2)T (A 24 1)
G(z,x,0%) = Z d—s
=0 2T (d —2) U (| — 21z — 22)

du Qu(u)
21 (1 + Cycomd2Q(u))

_ r(g) Fer) ( |2 — 1] )d_s
|z — x|z — 22|

d
T2

Fe) = S B s (14 Coeant i)
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Green's function in coincident point limit

The notation F’(c,) anticipates the relationship between
G(x,z,0") and the functional determinant:

C
1 4o (2)0(a —
og det Lx mpyTE + 0. (z)0%(x y)}
= Z 1/dd:z:a*(a:)GLl(a:,:c,a*)
L

= —2F(c,)log (52>

|21 — @2f?
where § regulates the divergent x-integral and again

=2 +d-2)T(d-2+1) [du /2
Fley) = > NEEE] 5 108 (1+ Cocam*Qu(u)

~
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Scaling dimensions
Putting all results together, we have
Saddle point equation

2§G(a¢1,x; 04)G(x2,250,) = —G(x,x;0.)G(21, 225 04)
1

F/(Ccr) = _§UI(CU)

Scaling dimensions

N o |1 c d 4 .
Aj = ?Lﬁﬂm [2 logdet(mmd“'s +o(2)é"(z y)) Jlog(G(z1,72;0))
!

Aj =N (Fleo) + ju(cs))
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Limiting cases

The scaling dimension is currently stated in terms of 2 complicated
functions of ¢,

A =N (F(es) +jnles))

2 (2+d-)T(d—2+1) [d
Fleg) = Lt r(fz)_ f)z' 22D [ (14 Cocom™2Quw)
=0 ’

u(cy) = smallest positive real root of 1/Q(iu/2) +2 %¢c,
For arbitrary c,, we can determine A; numerically.

Analytically, we can make progress by taking limits in small and
large ¢, (which will correspond to small and large 7)
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Small ¢,, 7 limit
When ¢, is small, we have

2T d-s)T (3)°
r()r(s-9)
d— S 2 (d—s) T (

:>ﬁ: J+
)

N|®w
~—
no

3>+ 0(5%)

» Matches anomalous dimension computation from standard

1/N perturbation theory
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Large c,, 7 limit
When ¢, is large, we have

(Cg)gﬂ' 1
e = 24-1 4 T (g)Qsi (= (1 He (c?/))

n S
dvs 2T (%) 1
w(cy) 5 y — +0 {5
r(4)r(3)e 3
Then the saddle point equation F'(c,) = —ju/(co) gives

cy = (j 9d+s ¢ T (%) P)(g) sin (7255)) T

T (3

A «
d+8] + A(d, s)]d+s

N 2

dts) ggin (74 dy)\ s
e ([E(0()

- Tr (%)2 sin (”d
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Short-range crossover

Above s, =2 — 2’y¢sz, the low-energy behavior of the model is
described by usual short-range O(N) fixed point.

The anomalous dimension of the fundamental operators is
O(1/N), so in our regime where N is infinite, we should see the
crossover happen at s = 2.

However, as s — 2, our scaling dimensions at large 7 have a linear
dependence on j:

d+s. .
TS5 Ad,5)} T +)

I

as opposed to the short range result, which has scaling dimensions
A_d_
that go as jd-1:

Aj =N (5757 Ay(d) + 77 Aa(d) )
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Short-range crossover
What explains this discrepancy?

We can investigate by taking a closer look at (¢, ), which was the
solution to 1/Q(ip/2) +27%co =0

Right at s = 2, u(cys) simply has a square root dependence on ¢,
at leading order

ies) = 1/eq + (‘; _ 1)2 +O(1/e,)

s=2

Just below s = 2, u(c,) at large ¢, saturates to a constant which
cannot recover the square root behavior
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Short-range crossover

But recall that there was an infinite tower of roots for
1/Qo(ip/2) +27°c, = 0 and we chose the smallest one.

c,=10,s=1.8
Co 1
—+

25 Qlip/2]

20

10-_\K K

2 6 8 10H
_10_
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Short-range crossover

It turns out that if we look numerically at higher solutions of
1/Qo(ip/2) + 27 %c, = 0 and “glue” them together, it recovers the
square root behavior as we take s — 2

s=19 s =1.999

H(co) H(co)
6,
5,
4r vo“.“
3f e

O“
2t
15
Co . s
10 20 30 40 10 20 30 20
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Short-range crossover

This “gluing” in turn recovers the short-range scaling dimension
behavior

d=3,s=1.999
®m Branch1 = Branch 3 ---. s=2result
® Branch 2

4
350}
300}
250}
200}
150}
100}

50}
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Short-range crossover

To understand more fully how the transition occurs, we need to
compute subleading corrections to the scaling dimensions by
including the determinant of fluctuations around the saddle point

Note that when NV isn't strictly infinite, the crossover will happen
at s, =2—-0O(1/N) <2
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Cylinder calculation

As a check of the flat space calculation, we can compute scaling
dimensions by mapping the problem to the cylinder using a Weyl
transformation

We start in flat space and, following the procedure in

[Paulos, Rychkov, van Rees, Zan 1509.00008],

write the long-range action in D = d + 2 — s dimensions with a
defect interaction localized in the d-dimensional subspace:

527( fé/dddeS S @002+ [ ata(glol)?

where ®! is a D-dimensional extension of ¢’:

o' (z,w = 0) = ¢ (x)
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Cylinder calculation

We then perform a Weyl transformation to the cylinder R x SP~1
and perform a similar analysis as [Cuomo, Mezei, Raviv-Moshe
2108.06579], with coordinates on SP—1 given by

ds® = db? + sin? 0dQy_1 + cos® 0dO s

Look at fixed large charge states by introducing fixed chemical
potential u

r(5) 1?2 — d2al) P (1) 2)2
S_>S+(47T)1_% /RXSD_l [ZM(Q)(I) (I)(I)) : (((I)) +((I)))

where we introduced a background gauge field in the time
direction:
80‘1)1 — Doq)l = 80(1)1 + Z'M(IDQ, 80‘1)2 — DO(I)2 = 80‘1)2 — z,utbl
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Cylinder calculation

Expand field about the ansatz
ol +id% = V2£(6), PP=pt=...=0N =0

Plug ansatz into action and extremize the following

Sel .
Aj= {C+w]
/ T i

We find that the scaling dimensions match our flat space results
for the 2 regimes we checked

> ¢ expansion about lower critical dimension s = %

» Large N expansion
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Conclusion and future directions

» We studied the spectrum of large charge operators in the
double-scaling limit of large j and large N in the long-range
O(N) model

» We found scaling dimensions interpolate between A; ~ (d;s)j
at small J and Aj o~ @j at large j, which is a qualitatively
different behavior from the one found in the short range
version of the O(IN) model

» In future work, would be interesting to look at subleading
corrections to scaling dimensions to see in detail how the local
behavior is recovered from the s — 2 limit
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Thank you!
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