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Introduction

Long-range O(N) model in Rd

S = C

2

∫
ddxddy

φI(x)φI(y)
|x− y|d+s , C =

2sΓ(d+s
2 )

πd/2Γ(− s2 )

Fifty years old
[Fisher, Ma, Nickel ‘72, Sak ‘73, Sak ‘77]
and has been discussed in many recent papers
[Paulos et. al. 1509.00008, Behan et. al. 1703.03430+1703.05325, Chai et. al.
2107.08052,...]

Short-range: spins have nearest-neighbor interactions
I Kinetic term (∂µφI)2

Long-range: spin interactions behave as 1/rd+s
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Introduction

Long-range O(N) model in Rd with quartic interaction

S = C

2

∫
ddxddy

φI(x)φI(y)
|x− y|d+s + g

4

∫
ddx(φIφI(x))2, C =

2sΓ(d+s
2 )

πd/2Γ(− s2 )

The scaling dimension of the fundamental fields is ∆φ = d−s
2

I s < d/2: Gaussian fixed point
→ No anomalous dimension

I d/2 < s < s∗: Nontrivial long-range fixed points
→ ∆φ still gets no anomalous dimension

I s > s∗ = 2− 2γSRφ , model is described by usual short-range
O(N) fixed point
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The setup
Long-range O(N) model in Rd with quartic interaction

S = C

2

∫
ddxddy

φI(x)φI(y)
|x− y|d+s + g

4

∫
ddx(φIφI(x))2

We study operators with charge j under the global O(N) symmetry

Oj ≡ (uIφI)j

where uI is a null auxiliary complex vector

Look at scaling dimensions ∆j of Oj :

〈Oj(x1)Oj(x2)〉 = (uI1uI2)j Cj

x
2∆j

12

∆j = −1
2 |x12|

∂

∂|x12|
log〈Oj(x1)Oj(x2)〉

5 / 39



The setup

Double-scaling limit
I Take j →∞, N →∞, keep ĵ ≡ j/N finite
I Small ĵ: ordinary 1/N perturbation theory
I j same order as N : new semiclassical saddle point emerges
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Summary of results

In the limit of large ĵ, we find a very different result for scaling dimensions in
long-range O(N) model compared to short-range:

∆j Short-Range O(N) Long-Range O(N)

Small ĵ limit N
(
d−2

2 ĵ +O(ĵ2)
)

N
(
d−s

2 ĵ +O(ĵ2)
)

Large ĵ limit N
(
ĵ

d
d−1A1(d) + ĵ

1
d−1A2(d)

)
N
(
d+s

2 ĵ +A(d, s)ĵ
s

d+s + . . .
)

where the short-range scaling dimensions were computed in [Alvarez-Gaume,
Orlando, Reffert 1909.02571; Giombi, Hyman 2011.11622]
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Saddle point approximation

Apply usual large N procedure of introducing a
Hubbard-Stratonovich auxiliary field σ and dropping the σ2 term in
the action:

S = C

2

∫
ddxddy

φI(x)φI(y)
|x− y|d+s + 1

2

∫
ddxσ(x)φIφI(x)

Green’s function G(x1, x2;σ) of fundamental operators with
respect to this action is

δIJG(x1, x2;σ) ≡
∫
DφφI(x1)φJ(x2)e−S
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Saddle point approximation

Two-point function of large charge operators (after j! Wick
contractions) is

〈Oj(x1)Oj(x2)〉 = (uI1uI2)jj!
∫
Dσ [G(x1, x2;σ)]j∫

Dφe−S

= (uI1uI2)jj!
∫
Dσe−NSeff

≈ N e−NSeff(σ∗)

where the effective action is

Seff = 1
2 log det

[
C

|x− y|d+s + σ(x)δd(x− y)
]
− ĵ log(G(x1, x2;σ))

with ĵ ≡ j/N
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Saddle point approximation

Extremizing Seff with respect to σ gives the saddle point equation

2ĵG(x1, x;σ∗)G(x2, x;σ∗) = −G(x, x;σ∗)G(x1, x2;σ∗)

Strategy to solve the saddle
I Expand G(x, y;σ∗) in powers of σ∗ and obtain integral

recursive relation for Green’s function
I Plug in reasonable ansatz for the profile of σ∗(x) at the saddle

point
I Use technology of fishnet integrals to turn a complicated

iterative series of integrals into a single integral and single sum
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Green’s function

The Green’s function can be defined as∫
ddx′

(
C

|x− x′|d+s + σ∗(x)δd(x− x′)
)
G(x′, y;σ∗) = δd(x− y)

Expand G(x, y, σ∗) in powers of σ∗

G = G(0) +G(1) +G(2) + ...

Plug into definition∫
ddx′

C

|x− x′|d+sG
(0)(x′, y) = δd(x− y)∫

ddx′
C

|x− x′|d+sG
(L+1)(x′, y;σ∗) = −σ∗(x)G(L)(x, y;σ∗)
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Green’s function
Leading order result is the usual two-point function without any
large charge operators

G(0)(x, y) = Cφ
|x− y|d−s

, Cφ =
Γ
(
d−s

2

)
2sπ

d
2 Γ
(
s
2
)

Get the result for order L Green’s function by iteratively applying
the above result

GL(x, y, σ∗) = (−1)L
(

L∏
k=1

∫
ddzkσ

∗(zk)G0(zk, zk+1)
)
G0(x, z1)

= (−1)L
(

L∏
k=1

∫
ddzkσ

∗(zk)
) L∏

j=0

Cφ
|zj+1 − zj |d−s


where z0 = y, zL+1 = x
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Green’s function

To proceed, use ansatz for profile of σ(x) at the saddle point:

σ∗(x;x1, x2) = lim
N→∞

∫
Dσ σ(x)e−NSeff∫
Dσe−NSeff

= lim
N→∞

〈Oj(x1, u1)Oj(x2, u2)σ(x)〉
〈Oj(x1, u1)Oj(x2, u2)〉

Noting ∆σ = s+O(1/N), conformal symmetry requires

σ∗(x;x1, x2) = cσ
|x1 − x2|s

|x1 − x|s|x2 − x|s
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Green’s function

Plug ansatz into expression for G(L)

GL(x, y, σ∗) = (−1)L
(

L∏
k=1

∫
ddzkσ

∗(zk)
) L∏

j=0

Cφ
|zj+1 − zj |d−s


= Cφ(−Cφcσ|x1 − x2|s)L

×
(

L∏
k=1

∫
ddzk

|zk − x1|s|zk − x2|s

) L∏
j=0

1
|zj+1 − zj |d−s
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Green’s function

The integral

I =
(

L∏
k=1

∫
ddzk

|zk − x1|s|zk − x2|s

) L∏
j=0

1
|zj+1 − zj |d−s


was computed in [Derkachov, Ferrando, Olivucci 2108.12620] in the very
different context of fishnet Feynman integrals

x1

z2 zL−1z1 zL

x2

x y

s
2

s
2

s
2

s
2

∆φ ∆φ . . . ∆φ ∆φ

. . .

. . .. . .

∆φ = d−s
2
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Green’s function
The result can be expressed in terms of Gegenbauer polynomials
C

( d−2
2 )

l (x)

I =
Γ
(
d−2

2

)
(|ξ||η|)

d−s
2 π

−dL
2

∞∑
l=0

(
l + d− 2

2

)

× C( d−2
2 )

l

(
ξ · η
|ξ||η|

) ∫
du

2π

(
ξ2

η2

)iu
(Ql(u))L+1

ξ = x− x1

|x− x1|2
− x2 − x1

|x2 − x1|2

η = y − x1

|y − x1|2
− x2 − x1

|x2 − x1|2

where Ql(u) is a ratio of Gamma functions

Ql(u) =
Γ
(
s
2
)

Γ
(
d−s+2l

4 − iu
)

Γ
(
d−s+2l

4 + iu
)

Γ
(
d−s

2

)
Γ
(
d+s+2l

4 + iu
)

Γ
(
d+s+2l

4 − iu
)

16 / 39



Green’s function
The result for the Lth Green’s function is then

GL = (−Cφcσ)L

|x− x1|d−s|y − x1|d−s
Γ
(
d−2

2

)
(|ξ||η|)

d−s
2 π

−dL
2

∞∑
l=0

(
l + d− 2

2

)

× C( d−2
2 )

l

(
ξ · η
|ξ||η|

)∫
du

2π

(
ξ2

η2

)iu
(Ql(u))L+1

The full Green’s function is just the sum over L:

G(x, y, σ∗) = 1
|x− x1|d−s|y − x1|d−s

Γ
(
d−2

2

)
(|ξ||η|)

d−s
2

∞∑
l=0

(
l + d− 2

2

)

× C( d−2
2 )

l

(
ξ · η
|ξ||η|

)∫
du

2π

(
ξ2

η2

)iu
Ql(u)

1 + Cφcσπd/2Ql(u)
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Solving the saddle

As promised, we have G(x, y;σ∗) in terms of a single integral and
single sum

G(x, y;σ∗) =
∞∑
l=0

(. . . )
∫
du(. . . )

Right now σ∗ is a just a function of x, x1, and x2 taking the form

σ∗(x;x1, x2) = cσ
|x1 − x2|s

|x1 − x|s|x2 − x|s

We want to find the cσ such that the saddle point equation is
satisfied.

2ĵG(x1, x;σ∗)G(x2, x;σ∗) = −G(x, x;σ∗)G(x1, x2;σ∗)
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Green’s function in various limits
We evaluate the u−integral by closing the contour in the upper
half plane and performing a sum over residues

G(x, y;σ∗) =
∞∑
l=0

(. . . )
∫
du

2π

(
ξ2

η2

)iu
Ql(u)

1 + Cφcσπd/2Ql(u)

=
∞∑
l=0

(. . . )i
∑
poles

Res

( ξ2

η2

)iu( 1
1/Ql(u) + Cφcσπd/2

)
Poles occur when the denominator is zero:

1
Ql(u) + Cφcσπ

d/2 = 0

Γ
(
d+s+2l

4 − iu
)

Γ
(
d+s+2l

4 + iu
)

Γ
(
d−s+2l

4 + iu
)

Γ
(
d−s+2l

4 − iu
) + cσ

2s = 0
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Green’s function in various limits
The zeroes of

Γ
(
d+s+2l

4 − iu
)

Γ
(
d+s+2l

4 + iu
)

Γ
(
d−s+2l

4 + iu
)

Γ
(
d−s+2l

4 − iu
) + cσ

2s

are on the imaginary axis, and we parametrize them as u = iµ
2

(with µ ∈ R>0 for the UHP)

2 4 6 8 10
μ

-30

-20

-10

10

20

cσ
2s
+ 1
Qℓ (i μ/2)

cσ = 10, s = 1.8, d = 3

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4
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Green’s function in various limits

In terms of u = iµ/2, the u−integral is

G(x, y;σ∗) =
∞∑
l=0

(. . . )i
∑
poles

Res

( ξ2

η2

)−µ2 ( 1
1/Ql(iµ/2) + Cφcσπd/2

)
Taking the limit ξ →∞ or η → 0 greatly simplifies the result
I Sum is dominated by smallest µ pole.
I Smallest µ pole corresponds to the l = 0 term of the sum

=⇒ neglect l > 0 terms
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Green’s function in various limits

We obtain the following results for the 3 limits:

G(x1, y, σ
∗) =

Γ
(
d
2

)
2πd/2|y − x1|d−s

µ′(cσ)
(

δ|y − x2|
|x2 − x1||y − x1|

)µ(cσ)− d−s
2

G(x, x2, σ
∗) =

Γ
(
d
2

)
2πd/2|x− x2|d−s

µ′(cσ)
(

δ|x− x1|
|x2 − x1||x− x2|

)µ(cσ)− d−s
2

G(x1, x2, σ
∗) =

Γ
(
d
2

)
2πd/2|x2 − x1|d−s

µ′(cσ)
(

δ2

|x2 − x1|2

)µ(cσ)− d−s
2

where δ is a regulator denoting x− x1 and/or y − x2
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Green’s function in coincident point limit
The coincident point limit doesn’t simplify as much as the other 3
limits, so we leave it as

G(x, x, σ∗) =
∞∑
l=0

CφΓ
(
d−2

2

)
|x2 − x1|d−s(2l + d− 2)Γ (d− 2 + l)

2Γ (d− 2) l! (|x− x1||x− x2|)d−s

×
∫
du

2π
Ql(u)(

1 + Cφcσπd/2Ql(u)
)

=
Γ
(
d
2

)
F ′(cσ)

π
d
2

( |x2 − x1|
|x− x1||x− x2|

)d−s
where

F (cσ) =
∞∑
l=0

(2l + d− 2) Γ (d− 2 + l)
Γ (d− 1) l!

∫
du

2π log
(
1 + Cφcσπ

d/2Ql(u)
)
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Green’s function in coincident point limit

The notation F ′(cσ) anticipates the relationship between
G(x, x, σ∗) and the functional determinant:

log det
[

C

|x− y|d+s + σ∗(x)δd(x− y)
]

=
∞∑
L=1

1
L

∫
ddxσ∗(x)GL−1(x, x, σ∗)

= −2F (cσ) log
(

δ2

|x1 − x2|2

)

where δ regulates the divergent x-integral and again

F (cσ) =
∞∑
l=0

(2l + d− 2) Γ (d− 2 + l)
Γ (d− 1) l!

∫
du

2π log
(
1 + Cφcσπ

d/2Ql(u)
)
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Scaling dimensions
Putting all results together, we have

Saddle point equation

2ĵG(x1, x;σ∗)G(x2, x;σ∗) = −G(x, x;σ∗)G(x1, x2;σ∗)
↓

F ′(cσ) = −ĵµ′(cσ)

Scaling dimensions

∆j = N

2 |x12|
∂

∂|x12|

[
1
2 log det

(
C

|x− y|d+s + σ(x)δd(x− y)
)
− ĵ log(G(x1, x2;σ))

]
↓

∆j = N
(
F (cσ) + ĵµ(cσ)

)
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Limiting cases

The scaling dimension is currently stated in terms of 2 complicated
functions of cσ

∆j = N
(
F (cσ) + ĵµ(cσ)

)
F (cσ) =

∞∑
l=0

(2l + d− 2) Γ (d− 2 + l)
Γ (d− 1) l!

∫
du

2π log
(
1 + Cφcσπ

d/2Ql(u)
)

µ(cσ) = smallest positive real root of 1/Q(iµ/2) + 2−scσ

For arbitrary cσ, we can determine ∆j numerically.

Analytically, we can make progress by taking limits in small and
large cσ (which will correspond to small and large ĵ)

26 / 39



Small cσ, ĵ limit
When cσ is small, we have

F (cσ) = −
c2
σΓ
(
d−s

2

)4
Γ
(
s− d

2

)
22s+1Γ (d− s) Γ

(
s
2
)4 Γ

(
d
2

)
µ(cσ) = d− s

2 +
Γ
(
d−s

2

)
cσ

2s−1Γ
(
d
2

)
Γ
(
s
2
) +O(c2

σ)

Then the saddle point equation F ′(cσ) = −ĵµ′(cσ) gives

cσ =
ĵ2s+1Γ (d− s) Γ

(
s
2
)3

Γ
(
d−s

2

)3
Γ
(
s− d

2

)
=⇒ ∆j

N
= d− s

2 ĵ +
2Γ (d− s) Γ

(
s
2
)2

Γ
(
d−s

2

)2
Γ
(
s− d

2

)
Γ
(
d
2

) ĵ2 +O(ĵ3)

I Matches anomalous dimension computation from standard
1/N perturbation theory
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Large cσ, ĵ limit
When cσ is large, we have

F (cσ) = (cσ)
d
s π

2d−1 d Γ
(
d
2

)2
sin
(
πd
s

) (1 +O

(
1
c

2/s
σ

))

µ(cσ) = d+ s

2 +
2s+1Γ

(
d+s

2

)
Γ
(
d
2

)
Γ
(−s

2
)
cσ

+O

( 1
c2
σ

)

Then the saddle point equation F ′(cσ) = −ĵµ′(cσ) gives

cσ =

 ĵ 2d+s s Γ
(
d+s

2

)
Γ
(
d
2

)
sin
(
πd
s

)
πΓ
(
− s

2
)


s
d+s

=⇒ ∆j

N
= d+ s

2 ĵ +A(d, s)ĵ
d
d+s

A(d, s) = 2π(d+ s)

Γ
(
d
2

)2
sin
(
πd
s

)
ds

Γ
(
d+s

2

)
s sin

(
πd
s

)
Γ
(
d
2

)
Γ
(
− s

2
)
π


d
d+s
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Short-range crossover
Above s∗ = 2− 2γSRφ , the low-energy behavior of the model is
described by usual short-range O(N) fixed point.

The anomalous dimension of the fundamental operators is
O(1/N), so in our regime where N is infinite, we should see the
crossover happen at s = 2.

However, as s→ 2, our scaling dimensions at large ĵ have a linear
dependence on ĵ:

∆j = N

(
d+ s

2 ĵ +A(d, s)ĵ
s
d+s + . . .

)
as opposed to the short range result, which has scaling dimensions
that go as ĵ

d
d−1 :

∆j = N
(
ĵ

d
d−1A1(d) + ĵ

1
d−1A2(d)

)
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Short-range crossover
What explains this discrepancy?

We can investigate by taking a closer look at µ(cσ), which was the
solution to 1/Q(iµ/2) + 2−scσ = 0

Right at s = 2, µ(cσ) simply has a square root dependence on cσ
at leading order

µ(cσ) =
s=2

√
cσ +

(
d

2 − 1
)2

+O(1/cσ)

Just below s = 2, µ(cσ) at large cσ saturates to a constant which
cannot recover the square root behavior

µ(cσ) = d+ s

2 +
2s+1Γ

(
d+s

2

)
Γ
(
d
2

)
Γ
(−s

2
)
cσ

+O

( 1
c2
σ

)
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Short-range crossover

But recall that there was an infinite tower of roots for
1/Q0(iµ/2) + 2−scσ = 0 and we chose the smallest one.

2 4 6 8 10
μ

-30

-20

-10

10

20

cσ

2s
+

1

Q[i μ /2]

cσ = 10, s = 1.8
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Short-range crossover

It turns out that if we look numerically at higher solutions of
1/Q0(iµ/2) + 2−scσ = 0 and “glue” them together, it recovers the
square root behavior as we take s→ 2

10 20 30 40
cσ

1

2

3

4

5

6

μ(cσ)
s = 1.9

10 20 30 40
cσ

1

2

3

4

5

6

μ(cσ)
s = 1.999
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Short-range crossover

This “gluing” in turn recovers the short-range scaling dimension
behavior
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Short-range crossover

To understand more fully how the transition occurs, we need to
compute subleading corrections to the scaling dimensions by
including the determinant of fluctuations around the saddle point

Note that when N isn’t strictly infinite, the crossover will happen
at s∗ = 2−O(1/N) < 2
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Cylinder calculation

As a check of the flat space calculation, we can compute scaling
dimensions by mapping the problem to the cylinder using a Weyl
transformation

We start in flat space and, following the procedure in
[Paulos, Rychkov, van Rees, Zan 1509.00008],
write the long-range action in D = d+ 2− s dimensions with a
defect interaction localized in the d-dimensional subspace:

S =
Γ
(
s
2
)

(4π)1− s2

∫
ddx d2−sw

1
2(∂µΦI)2 + g

4

∫
ddx(φIφI)2

where ΦI is a D-dimensional extension of φI :

ΦI(x,w = 0) = φI(x)
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Cylinder calculation

We then perform a Weyl transformation to the cylinder R× SD−1

and perform a similar analysis as [Cuomo, Mezei, Raviv-Moshe
2108.06579], with coordinates on SD−1 given by

ds2 = dθ2 + sin2 θdΩd−1 + cos2 θdΩ1−s

Look at fixed large charge states by introducing fixed chemical
potential µ

S → S +
Γ
(
s
2
)

(4π)1− s
2

∫
R×SD−1

[
iµ
(
Φ̇1Φ2 − Φ̇2Φ1)− µ2

2
(
(Φ1)2 + (Φ2)2)]

where we introduced a background gauge field in the time
direction:
∂0Φ1 → D0Φ1 = ∂0Φ1 + iµΦ2, ∂0Φ2 → D0Φ2 = ∂0Φ2 − iµΦ1
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Cylinder calculation

Expand field about the ansatz

Φ1 + iΦ2 =
√

2f(θ), Φ3 = Φ4 = · · · = ΦN = 0

Plug ansatz into action and extremize the following

∆j =
[
Scl
T

+ µj

]
µ=µ∗

We find that the scaling dimensions match our flat space results
for the 2 regimes we checked
I ε expansion about lower critical dimension s = d+ε

2
I Large N expansion
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Conclusion and future directions

I We studied the spectrum of large charge operators in the
double-scaling limit of large j and large N in the long-range
O(N) model

I We found scaling dimensions interpolate between ∆j ∼ (d−s)
2 j

at small ĵ and ∆j ∼ (d+s)
2 j at large ĵ, which is a qualitatively

different behavior from the one found in the short range
version of the O(N) model

I In future work, would be interesting to look at subleading
corrections to scaling dimensions to see in detail how the local
behavior is recovered from the s→ 2 limit
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Thank you!
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