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The O(2) sector at large charge

atment
Canonical quantization

e Consider a conformal field theory (CFT) in D-dimensional flat
space with an O(2) internal symmetry. Generically, it can be a
subgroup of a larger global symmetry.

e Since flat space is conformally equivalent to the cylinder

R x SP~1 we will work in the cylinder frame.

e Consider the state |Q) generated by the scalar primary 09 with
0O(2) charge Q.

e We are interested in correlators of such primaries at long
distances, the easiest of which can be expressed on the cylinder as

(Q,00|Q, —00) = ﬁ“_r)noo <Q|e—ﬂHcyl|Q> .
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The O(2) sector at large charge

e There is strong indication that as @ becomes very large, this
correlator on the cylinder has a description in terms of a weakly
coupled effective field theory (EFT):

1/(p-1)

R )

SO(D +1,1) x U(1)q
SO(D) x U)pspq

valid for energy scales KE<p~

| =

where R is the cylinder radius.

Arxiv: 1505.01537, 2008.03308, 1611.02912

e The parameter 1(Q) can be interpreted as the chemical potential
dual to the quantum number @ which is the fixed control

parameter. The symmetry-breaking pattern is known as the
conformal superfluid phase.

Kalogerakis Conference Talk



The O(2) sector at large charge

e The corresponding EFT in Euclidean spacetime has been

computed in terms of a Goldstone field x = —iut + (7, n).

e (7, n) are the fluctuations over the fixed-charge ground state
& .

X =—ipr.

Arxiv: 1505.01537, 1611.02912
e The action of the EFT is

S=-a / drdS (- 0.x G“X)D/2 -+ curvature couplings,
RxSP-1

where ¢; an unknown Wilsonian coefficient which depends on the
ultraviolet (UV) theory (i.e. the starting CFTp) anddS = RP~1dQ.
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The O(2) sector at large charge

e This is to be interpreted as an action for the fluctuation 7 (7, n)
with cutoff A ~ p, so that a hierarchy is generated, and it is
controlled by the dimensionless ratio (Rpu) > 1.

e Every observable in the EFT is expressed as an expansion in
inverse powers of p. In particular, the ground-state action takes

the form -
2 —T1 —2r
5%:< = >Za,(Ru)D 2r,

r=0

where the coefficients a;, depend on ¢; and all other Wilsonian
coefficients associated to curvature terms.

Arxiv: 1610.04495, 2010.00407, 1805.00501
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The O(2) sector at large charge

Classical treatment
Canonical quantization

e Neglecting curvature couplings and expanding to quadratic order
in (7, n), the EFT Lagrangian reads

b_>D(D 1)
2

& =—apP—iap’'Ditap (#2 +5 1_ : (amf) +0(u"7).
e The conjugate momentum to 7 is defined in the usual manner
from the quadratic Lagrangian
0L . .
N=i—| =abu’+iqD(D—-1)uP?x.
07 lin
e At leading order, this gives rise to the usual canonical Poisson
brackets.
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The O(2) sector at large charge

Classical treatment
Canonical quantization

e The fields 7w and I can be decomposed into a complete set of
solutions of the equations of motion (EOM) :

iMg7
1 QpRP—1D(D — 1)puDP—2
1

(T, n) =m —

<&

@ RD=1D(D — 1)uP—2 p57im \ V29¢
Mo

QDRD—l

caD(D — 1)p w
APO IS (st [ V) 4 31 [T

£,m

+

ay
wpT €m  wpT y*
e Yem(n) + ———=e Yy, (n
Zm( ) \/27 ) Em( )) )

N(r,n) = Dl +

Arxiv: 1610.04495

. D/2 .
e 7o and [y are constant zero modes of the fields, Qp = 2(WD//22)

the volume of the D — 1-sphere and the Yj,, are hyperspherical
harmonics.

Kalogerakis Conference Talk



The O(2) sector at large charge

Classical treatment
Canonical quantization

e The dispersion relation for the oscillator modes reads

(C+ D —2)

Rwy =
! (D-1)

e Adding higher-curvature terms in the EFT will add subleading

corrections in 1/Q to this expression.

e The complex Fourier coefficients ay,, can be extracted as follows:

C1D(D—1 b-2

arm =
2(4)2 RD 1

[aStr(r.m) 9 (Yin(m)e™) = 0r(r,m) Vi(m)e .

e The canonical Poisson bracket between 7 and [1 corresponds to
the Fourier mode brackets {asm, az,m,} = Oppr Oy -
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The O(2) sector at large charge

Classical treatment
Canonical quantization

e The classical O(2) current and conserved charge are

0L

w_
80ux

Q = /dS J = C1DQD(R,U/)D71 + no.

e The leading contribution to the charge comes from the
homogeneous term corresponding to the ground state.
e This relates the EFT scale i to the ground state charge Qg as

Q 1/(D-1)
- |:C1DRD1§2D:| '

e At leading order in the fluctuations, the charge @ of a generic
solution of the EOM depends only additively on the zero mode [y,

Q=CQ+p.
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The O(2) sector at large charge

Classical treatment
Canonical quantization

e Using the state-operator correspondence, we can compute the
scaling dimension of the operator ¢? from the cylinder
Hamiltonian.
e A generic solution of the EOM corresponds to an operator with
scaling dimension

o 1 9N

A= REcyI =Ao+ —Tlo +

2 *
50 T 20quaq 0 TR 2 widinam

£>1,m

e Where

by 8%0¢ 1

9Q 7 9@ 8Q  aD(D — )Qp(Ru)P2

Ag = (D — 1)2p(uR)® + O((Ru)° ™),

e The quantity Ag corresponds to the leading " classical”
contribution to the action.

Kalogerakis Conference Talk



The O(2) sector at large charge

Classical treatment
Canonical quantization

e Canonical quantization in the cylinder frame is obtained by
T-slicing, associating a Hilbert space .73 to each fixed 7.

e This poses no conceptual problems since the cylinder is a direct
product of the time direction and a curved manifold.

e The mode coefficients in the decompositions are promoted to
field operators with non-vanishing commutators,

[0, Mol = i (3tm: 3l | = G100
e These are equivalent to the canonical equal-7 commutator

[7(7,n),N(7,n")] = idgp-1(n, n’), where dgp-1(n, n’) is the
invariant delta function on SP—1.
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The O(2) sector at large charge

Classical treatment
Canonical quantization

e To build a representation of the Heisenberg algebra we start with
a vacuum | Q) which satisfies

am|Q) =TMo|Q) = 0.

e As we are in finite volume, the O(2) charge is a well-defined
operator acting on ¢y as

Q:/dSI'I(T,n):Qol-i-no, 21Q) = Q|Q).

e The non-zero charge of the vacuum can be increased by acting
with the mode g, which is the only one carrying non-zero charge,

(2, 7m0] = —i , (2, aim] = | 2,3}, =0.

e This does not lead to a degeneracy in the spectrum since these
states live at the cut-off.
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The O(2) sector at large charge

Classical treatment
Canonical quantization

e The quantized quadratic Hamiltonian corresponding to the
classical expression of the scaling dimension can be written as the
sum of a normal-ordered operator :H: and a vacuum contribution
1
D=R:H: +411,  where  Ap:=3 > (Ruwy).

>1,m

e The vacuum contribution needs regulation and has physical
consequences.

e This first appeared in D =3 in
Arxiv: 1611.02912

e And D =4,5,6in

Arxiv: 2010.00407
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The O(2) sector at large charge

Classical treatment
Canonical quantization

e From the point of view of the large-charge expansion, the
one-loop correction comes at order O(Q%{log Q}).

e We need to keep track in the tree-level computation also of all
the curvature terms up to this order.

e In D = 3 we know that

Ao = d5 Q% + dy QY7 + O(Q_1/2>,
e In general there will be [(D + 1)/2] terms with positive

Q-scaling, each controlled by a Wilsonian coefficient
Arxiv: 2008.03308
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The O(2) sector at large charge

Classical treatment
Canonical quantization

e The commutators between D and the various modes show which
ones generate excited states when acting on the vacuum:

[Da afm] = —Rweam, |:D7 azmi| = RwéaZm’
00y .0%Ng
D,mol = —i — [—=Tlp, D,TMy] = 0.
[D, mo] o gz [D, Mo]

e The Hilbert space 73 of the theory is described as the Fock
space generated by states of the form

azlml e azkmk‘Q>

with charge Qy and scaling dimension
k
A=Ng+ A+ Z(ka).
i=1
e These states are also known as superfluid phonon states in the
literature.
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The O(2) sector at large charge

Classical treatment
Canonical quantization

@ From the CFTp perspective, these states correspond to
primary operators with different quantum numbers than &9
but same O(2) charge.

@ The only exception are states including at least one aJ{m which
are descendants since their energy is Rw; = 1.

@ Not all phonon states can be described within the EFT. When
the £-quantum number becomes too large, their contribution
Rwy can compete with the leading Ay term, breaking the
large-@Q expansion.

@ Phonon states with comparable energy wy should be excluded
from the EFT. This sets a cutoff for the /~-quantum number as

QY/(D-1),

fcutofF ~
Arxiv: 1711.02108, 1906.07283



The O(2) sector at large charge

Classical treatment
Canonical quantization

e The structure of the spectrum and the existence of the
above-mentioned charged spinning primaries is a direct prediction
of the superfluid hypothesis for generic a O(2) — CFTp.

e Canonical quantization is the appropriate framework for this
discussion. One will expect corrections to scaling dimensions and
the spectrum structure coming from interactions corresponding to
subleading terms in large Q.

e These are best discussed within a path integral formulation.
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Path integral methods

Two-point functions

e An equivalent basis of the fixed-7 Hilbert space .7 is given by
the field/momentum eigenstates

x(m) [x) = x(n) Ix), M(n) M) = N(n) ().
e Their bracket is fixed by the canonical commutation relations,
(x| = e oo,

e Generically, the vacuum |Q) is a superposition of momentum
eigenstates without the lNg-component

Q) = / DI 3(Mo)W (M) ).

where 44 is a normalization factor.
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Path integral methods

Two-point functions

e In the limit of large separation, 7 — oo, correlators will not
depend on the specifics of the vacuum wave function WV g. Without
loss of generality, we can take Vg = 1.

e The overlap of |Q) with field eigenstates is then given by

x|Q) = {‘:/Q exp {QDRD—l Jds X} if  is constant,

otherwise

e Generically, on a 7-slice, the zero-modes of any field
configuration can be separated by integrating on the sphere

on/de.

e This bracket sets the correct boundary conditions for any
correlators in the path integral representation of the form

(Q...]1Q).



Path integral methods Toepaiv: fmediens

e The vacuum correlator with cylinder times 7 > 71 can be
written as follows:

D|Q>:|,/VQ‘2/'Dxexp|:75[X] o - 1/ dT/dSX} o (r1,7m2),

e We introduced the notation <7 (11, 12) for future convenience.
e The path integral can be computed as a saddle-point expansion

around a field configuration X@Z#(T, n) which is a solution to the
minimization problem

TZ 2% 0% iQ
5S[x]= [ drdS (-0, )6 ds 5
b / ’ ( “8(8u><)> X+/ <a(aTx)+QDRD—1> X

e The bulk EOM requires the (Euclidean) O(2) conserved current:

0.7
d(9#x)

(r2—71)
R

(Qle™

T2

T1

= D(—0ux 8ux)D/2*1 Oux = Ju

to be divergence-free.

Kalogerakis Conference Talk



Path integral methods Toepaiv: fmediens

e The general solution compatible with the boundary conditions is
the homogeneous configuration x (7, n) = —iut + 0, with 7o
constant and the parameter p fixed by the boundary condition to:

p-1__ @
aDp = W,

e The action expansion for this ground-state fluctuation
x(r,n) = x™(,n) + n(r,n) is, to quadratic order,

=Tl p—2D(D-1) /72 / P 1 2 D3
S=Ag—— _ d ds ——(0; 17 .
0" tau 5 . T w +(D—1)R2( ) ) +O0(" )

e The boundary term eliminates the linear term and
correspondingly the zero-mode terms as expected.
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Path integral methods Toepaiv: fmediens

e The normalization .44 is chosen such that the correlator takes
the form

(11, 75) = R™2BoHbdit) gy {_(7-2_1?7_1) [Ao + A1 +.. } } :

e The correction A is the Casimir energy of the fluctuation m

around the homogeneous ground state x.
e This corresponds to the two-point function in RP normalized to
unity. The Weyl map to RP can then be performed as

(09(2)0° (x)) o = ('R') ('XR') (07 (r2, m2) 0% ().,

e In the state-operator correspondence, the reference states |Q)
and (Q| correspond to insertions of scalar primaries at 7 = foc:

Q) == 09(~00)[0), (@ = (0] 69(o0)",
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Path integral methods

Two-point functions

e Correlators of one-phonon states are obtained by acting with a

single creation operator a;[m on the vacuum |Q):

2y =2 1Q), where &) =1Q).

e In canonical quantization, using the commutation relations of the
aym and a};m the two-point function is found to be

—(m2—71)D/R — (T —71)w
(22?772”1‘;1) = (Q|ae,m, € (r2=m)D/ az1m1|Q) = (1, m2)e (r2=71) 60,0 Omymy
_ RAe—A(Tz—"’1)/"?’521225mlm27

e A is the conformal dimension, consistent with the general
structure of a conformal two-point function on the cylinder.
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Path integral methods Toepaiv: fmediens

e This is true to quadratic order in the Hamiltonian. We expect
loop corrections to shift the spectrum in a complicated way.

e It is convenient to formulate the correlator as a path integral.
This can be done in a straightforward manner by expressing ag, in
terms of the fields, so that one finds

(@ ey aD(D —1)uP?
Lomp 1 Lymy / 2RD_1\/“W
(r1,72) lim (we, = 0r) (e, + 07) (m(7', ma)m(7, my))

=7

AS(m) [ 4S(m) Vi (12) Yo, (m)

e The two-point function of the Goldstone fluctuations is defined
as

(71'(7'2,[12) (7-17”1)> W/Dﬂ'ﬂ' 7'27n2) (7‘1 nl)e S[”]
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Path integral methods

Two-point functions

e The information about the spectrum is contained in the full
m-fluctuation two-point function.
e In this formalism, the result in the canonical quantization is
replicated by using the tree-level propagator, which on the cylinder
reads

1

&, - —ry| Yem(m2)* Yem(n1) |72 — 71l
n )y = - e—welma—7y| em m _
(m(72, n2)mw (71, n1)) DD — D(uR)P—2 (22:1; 2Roop 2R )
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Path integral methods Toepaiv: fmediens

e The computation of (62%2\&%1) in canonical quantization is

generalized to states with more phonon excitations.
e For two phonon excitations

Q Q _ —(m2—71)D/R _t T
{eam@gmy | moegmy)) = (Qlaczm agm e 341t Ay my | Q)

7(7'2771)<w52+w€/)
%(717 7—2) e 2 (6Z1Z26mlm25Z{Zé5mimé + 6515é6m1m£621225m{mz) .

e For states with higher numbers of phonon excitations the energy
is just corrected accordingly and there is a sum over all possible
permutations of Kronecker deltas.
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Correlators with current insertions
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© Correlators with current insertions
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Correlators with current insertions

e Working with an EFT at large charge guarantees that the physics
at the fixed point is captured by a free theory.

e Hence, we are able to explicitly compute three- and four-point
functions with current insertions between spinful large-charge
primaries ﬁgn for a strongly coupled system using only the
operator algebra.

e Some of these correlators have already appeared in the literature
in the scalar case ¢ = 0.

Arxiv: 1611.02912, 1710.11161, 2102.12583
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Correlators with current insertions

e The classical conserved currents in the model are
Jup=caD(—-0.x 8“)()D/2_1 0uX,

Tw=a {D(_ Iux 3“X)D/2_1 Oux Opx + 8u(— Ipux 8“X)D/2} '

e Their integrals are related to the conserved charges of RY.
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Correlators with current insertions

e On the cylinder, the currents are expanded in fluctuations around
X (1, n) up to quadratic order as

Q i D—2)(D—1 8;m)? _
Jr= =i 1+7(D71)7'r7( )(2 ) a2y 2( ) +O(u 3) ,
QpR “w 2 R2(D — 1)
Q 1 i (D—2 _
,:7{—6,«+i( )7'1-6,-7r+0(u 3)}
QpRDP—-1 L uR n pR
A D D(D —1 D — 3) (8;x)?
T.. = o [ P ( ) 7.1_2+( ) (9im) +O(H_3) 1
QpRP ©w 2u? R2(D — 1)2
A 1 D i D
Tri=—i 0 {— oim + — — 7O+ O(u73)}
QpRP LuR D -1 n R
Ag hi; D DMD-1)| ., (8;m)? _3
Tj= —— 1+i—7 — + O
i= QpRD (D —1) “ 202 R2(D — 1) (™)

A 1 D _
+ —QD;D POACE {oimom+0(u?)},

e hj; is the metric on the D — 1-sphere and homogeneity of Y7
guarantees that T.; = J; = 0 at leading order.
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Correlators with current insertions

e We will discuss correlators of these currents in the canonically
quantized setting which is sufficient for leading-order results.

e Integrating J. or T, over spatial slices gives rise to the charge
operators D and 2.

e When inserted at time 7 they measure the scaling dimension and
the O(2)-charge of any operator insertion contained in the
half-cylinder (7, —o0) x SP~1. This fact is expressed by the Ward
identities

][ o) =D Q Hﬁ 7, 0;)),

Ti<T

T)Hﬁ,’(T,’,n, ZA Hﬁ 7_17"1

Ti<T

e These identities hold order by order in a loop expansion and can
be used to constrain correlators with insertions of the currents.
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Correlators with current insertions

e We first compute the correlator of two spinning primaries

ﬁ’?n|0> = a}le) inserted at times 71, 72 with an insertion of
Ju(1,x) at time 71 < 7 < 7. To leading order one finds

. Q
<ﬁtz2m2J (7 ")ﬁzm1> = *’W{ A g+Rwg, (1, 72) 8y 05 Smymy

AQ+R R, /@60
Q
+ WAQH?W[ (r1, 72 | T)(D —1)(D —2)2p —L 2L

. * .
{ tomy (M Yeymy () — O igmg () 01 Viymy () Blyelml(")} ,
2DAq 2m2 1m

R2(D — Dwg,wey

670 sirmel =i AP =2  Aethe Ll yx 8y 102"
(O gymyJi(T 1) p1m1>7'm AQ+R“JZI(T17T2‘T) E tomy (M 0oy my (M) — (1 2)7|.

e For later convenience we have introduced

@ pg+Rwg, (T1,72) = & (11, T2) € BRGEACE = e A2/ ReMrmT)/R,

A 2 (117 | )
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Correlators with current insertions

e This generalizes «7(71,72) = &/ A(71,T2) defined by the
two-point function (Q|Q).

o If we integrate J; over the sphere, we obtain the conserved
charge, so the integral over the three-point function with a J; is
fixed by the Ward identity, giving us a consistency check:

/dS(n) <ﬁ[232JT(T7 n)ﬁﬁ?m1> = _’Q JyAQ—i—Rwl_b (7_17 7_2) 561825m1m2-
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Correlators with current insertions

e The current is a sum of a classical piece and quantum
corrections. The classical part is homogeneous and, by charge
conservation, time-independent. It follows that the classical
contribution to the three-point function must be proportional to
the two-point function

<52?n2 | 51%1> = dAQ"FRUJ(Q (71, 72) 00,0y ms -

e The quantum piece will in general give a contribution that has
the same tensor structure as the left-hand side (LHS) and since it is
not homogeneous, can be decomposed into spherical harmonics.
Moreover, by charge conservation its integral must vanish.

e In the same way, the classical piece of J; is zero so we only have
the inhomogeneous quantum contribution in the J; correlator.
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Correlators with current insertions

e The separation into a homogeneous classical part and a
space-dependent quantum contribution applies to any physical
observable.

e The special case of ¢; = 0 corresponds to the scalar ground state
|Q) and Ward identities guarantee that (Q|J;|Q) = 0 to all orders.
e From the above relations one can extract the corresponding
operator product expansion (OPE) coefficient:

08 {04 (r,n)02) . Q

o8 4 <ﬁ[moﬁ€(fn> = _IQDRDfl'

e These correlators can also be computed for higher-phonon states.
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Correlators with current insertions

e We next compute the correlators with two insertions of J, at
cylinder times 7 < 7’ between insertions of ﬁgn at 71 and 7 such
that 7 > 7 > 7/ > 71. Two insertions of J. result in

2
<ﬁ122,,.2 (7, ")JT(T n )ﬁllm1> == WAQJer(;Q (71, 72) W 52122 5m1m2
(D —1)? S (D+2¢—-2) D1 ,
X q1l4 Ze Ir=7 “URwp————"C2 (n-n')
2DAy 5 (D —2)

Ag+R Q*(D —1)2 R, fwg oy Yy my (M) Yeymy (n')
+{ QT (1,2 | 7) ( ) 172 (_ £Lomy 1m

Ag+Rwgy 20pR2D—2D A i

(D —2) [ 0iYeymy () BiY(, (1)
(D-1) [ (D — 1) RPwy, wy,

- yzlml(n)ye*zm(n)}) +((rom & (")) }

where we have introduced the Gegenbauer polynomials

D/2—-1
P ) = B2% 5 v () Yem(n).
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Correlators with current insertions

e Integrating this result over the sphere centered at the insertion
point (7, n) gives again the conserved charge as in the Ward
identity and must eliminate the 7-dependence

/dS(n) (078 I (o) o (r, )08, ) = —iQ (6, Jo (v, ) O8,,.)
e The remaining components of the JJ correlators read

(679

Lo my

Jo(7,n)Ji(v',n") 02

Lymy

Ag+Rw Q?
iRy (172 | ) So—ss
AqtRwey 2QpR2D—2AgD

>:07

Q Ji(r,n) (', n") O

Lymy

)=

( Loymyp

Im=7"lwe (D+2572) b_
e 1
3,‘8/4 C2 n- n’ ) 5,,, m
|: J% Roog (D 2)QD ¢ ( ) o0 9mymy

Y ymy (1) 0i Yoy my () N 0iY gy my (1) 0 Yoy my ()
(TTW@ZR\/W e(T T)wglR\/W .

e For the last correlator the tree-level contribution vanishes, but it

is not symmetry protected so that subleading corrections may

appear.
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Correlators with current insertions

e Now we compute correlators with an insertion of the
stress-energy tensor T at cylinder time 7 with spinning operators
ﬁgn at 71, ™ such m» > 7 > 11.

e The insertion of the T, component leads to

_ Ag+Rwy 1
(0, 02 Trr (T, ")ﬁ2m1> = - 'QiAQ+RwZi (r1,m2 | 7) W {(AO + Al)‘swl Smymy

lom

Q N D—-3 8,‘Y;m (n)B,YZ m (n)
+ SRRV (D= )Yy (1) Yoy () — (D) e O]

(D-1) R2wj, we,

e For insertions at large separation 71,7 — £00 and ¢, = /1, the
three-point function does not depend on the 7-slice of the T

insertion. _ ) ] _
e Integrating this result over the sphere insertion point n

eliminates the 7-dependence according to the Ward identity:

Lom:;
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Correlators with current insertions

e Correlators involving the other components of the stress-energy
tensor read

(32, Trilr M OR ) = o a0 oo (2 1) s [ 22 (1) 0y () — 10 207
2m2 1m AQtRwyy 2RD wg, 2m) 1M

Ap+R
(0.8 Titr.mo ) = e, ot

“2
Lpmy T ngrhug, (7217 (D — DQpRD

{hij[(AU + A1) Sey00 Omymy

QpR, fwg we, 0; Y my (1) 8 Yoy my (n)
_ * _ 2mp 1m
e (O = DYy (M) Ve g () T R, )]

9
+ R /Wi Wi, Qp

Y iomy (M) 0y Yoy my (1) }
szgl we,
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Correlators with current insertions

e An insertion of the trace of the energy-momentum tensor
T+ hJT vanishes on any phonon state by conformal invariance.

(078 WiTir,m 62, ) = WO (g my | 1) (D 1) (80 + A1) 61y, Srmymy
1m Q+Rwey (D —1)QpRD 27

Lo mp
N QpR, fwg o, <( aiyfz,,,Q(") 3iYelm1(”))}
5 ,

2 y*
D = 17 ¥y () Yy () = (0 = 3) =252

which sums to zero with (&, 2 T (T, n)ﬁélm1>
e Finally, there is a total of six correlators with two insertions of
the stress-energy tensor at 7 > 7’ between spinning operators ﬁgn
at 71, 7> such that 7 > 7 > 7/ > 7 and six correlators involving
the various components of one insertion of the stress-energy tensor
and one insertion of the O(2)-current respectively at times 7 > 7/
between spinning operators ﬁgn at 71, ™ such that we have the

ordering 7o > 7 > 7’ > 1.
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Conclusions

e We have systematically collected three- and four-point
correlators of a CFT with a global O(2) symmetry using the
large-charge expansion.

e We have studied in particular correlators with current insertions
of J and T sandwiched between either the scalar large-charge
ground state or higher phonon states with spin.

e The general structure of our correlators contains contributions
with positive @-scaling coming from the tree-level EFT Lagrangian
plus quantum corrections starting at order Q° which are
independent of the Wilsonian coefficients in odd dimensions.

e A non-trivial position dependence in our correlators must always
be due to the quantum corrections since the ground state is
homogeneous.
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Conclusions

e The results here hold for the O(2) model in D dimensions at
large charge or the homogeneous O(2) sector of a CFT with a
larger global symmetry group. Once we want to discuss the full
non-Abelian structure, things become more complicated.

e The first observation is that the correct quantity to fix is not a
set of charges, but a representation.

e The immediate generalization corresponds to fixing the
completely symmetric representation.

e Other representations can be obtained in two ways: by exciting
type-ll Goldstones that are charged under the global symmetry or
by starting from an inhomogeneous ground state corresponding to
a different saddle point.

e The two approaches must give the same result in the appropriate
limit, but have their own technical complications.
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Conclusions

e Type-1l Goldstones contribute at order 1/ and for this reason
they do not play a role in the computations in the present work,
but in order to be studied consistently they require the addition of
new subleading terms to the EFT.

e The inhomogeneous saddle is to date only known for the simple
case of the O(4) model and an analytic expression is available only
in a special limit.

Arxiv: 1902.09542

e Moreover, since it breaks the SO(D) rotational invariance that
we have used intensively in our present computations, one expects
that computing correlation functions using both the tree-level and
the quantum corrections will be more technically challenging.
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Conclusions

Thank you!
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Conclusions

e Starting from the vacuum |Q) one can obtain a state annihilated
by asm with charge Qp + ¢ and scaling dimension Ag(Qo + q):

0+0)=m|Q) =exp| ey [asarm)] Q).

e While these states are all annihilated by the ladder operators,
since [agm, mo] = 0, they are not zero modes of [p.
e They do not represent degenerate vacua, but they have a gap

Ao(Qo + q) — Do(Qo) ~ q(Rp) -

e 7 is the only operator on which the O(2)-charge acts
non-trivially, it has to be compact, my ~ 7wy + 271, which implies
that g € Z.

e States with charge Qg + g live at the EFT cutoff and will not be
discussed any further.
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Conclusions

e We are mostly interested in correlators in which the vacuum |Q)
is inserted at large separation on the cylinder, namely at 7 = +oc.
In this case the details on the boundary conditions the vacuum
imposes are irrelevant. We can now construct path integrals for
the norm of the states which correspond to two-points functions of
the corresponding primaries in the CFTp at large cylinder-time
separation.
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Conclusions

e . These read

Ap+Rw A
— Q 14 0
(Cpy Trr (Fa T (7 0 OF, ) = 5 2 (0721 7)
D
D ) D+2¢—-2) D4
{[A0+2A1+ Ezé Ir=r ‘WZRWE%QQ (n-n') 80105 0mymy
a _

’ /7
) —(r—=7")
TR0 g 0 ) Yoy (m) e T %]}

7R /Do W, |:Y52”72 Y’lml(n )e

Ag+Rw QpAgR, fwe wyp
QtRwy 190
+{ Syt (172 | 7) (0= 1) Yeymy ()Y ()
D —3) 9i Yoy my (n) ;Y (M)
_ ) ZiTtym L ) + ((‘r,n) “ (T',n,)) .
(D—1) szgl Wy,

This correlator is symmetric under (7,n) <> (7/,n’). The £ =0
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Conclusions

special case of this correlator has already appeared .

Ap+Rw A
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Conclusions

This correlator is symmetric under (7, n, i) <> (7', n’,j).

AQ+Rw142( | ) AoD 1
T, | T) ———= ——
AQ+Rw1{1 ZQDRZD (D—1)

* ’
e, (D+20—2) D4 Wy Yiymy (1) 0i Yo my (n)
0; > e Im e Z T — 22T (0 ) S0, Smpmy + |2 22 L LTLTT
{ Z (0—20p ¢ (n-7) Seyt1 Smymy we

T

(O, Toi(r, mTrrn (v 000 ) = — o7

Lo my

"
) e(ﬂ' T )“’1{2

OiY 5y my (M) Yo m (n) (D —1)
Y e SR L A ke L { Y, ;Y - 2*]
P e 1/% 5y (1) 9 Yoy (m) — (1 5 2)°] L.

Since T.; vanishes on the ground-state solution, the correlator solely receives a second-order contribution from the
linear terms and the quadratic term of T.;. Moving to the combination T.; Tj, one finds

AQ+Rwy 2( | ) AgD hik
T1, T2 T) — @7 =
AQ+Rw[ ZQDRZD (D — 1)2

(O, Toi(r, mTylr' ,n) 63, ) = o

{8 Zef\fff Jwp (D+2Z*2)C2

"2"'2
-1 ’
o (nn")dp,0,0mymy +

’
(D —2)Qp wey E(T*T )WI.Z
Yeymy (1) 8V o (1) (D —1
Wey Teymy i Teymy ( ) [ *
- + 2y (n)8;Ye (n) — (1 +2) .
we, ef(rfr/)wél D wiy £amo i Teymy
Again, besides the linear terms only the quadratic term of T..; contributes at second order. In addition, the

correlator (*) O, g T,i(7, n) W5 (n') jk(T ,n )ﬁg‘) m, differs by a minus sign from the previous correlator
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with an insertion of T, (7', n’), as imposed by conformal invariance.

Ap+Rw A hi:
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This correlator is not symmetric in (7, n) <+ (7/, n’), however, by conformal invariance, the correlator

-Q ij WAV Q f I o
<ﬁlzmz Trr (7, mh? (n)Ty(7", n )021m1> is symmetric in (7, n) <> (7', n").

One can check directly that the above correlators satisfy the Ward identity for T insertions in Eq. (??). For

example, for two insertions of T, one finds

-Q I 5Q 1 -Q 1N 5Q
aS(n) (=) O 0, Trr(rmTrr(r/ 0)OF = ——(Bo+ AL+ Rugy) (5) 010 Tor(e.n)0F
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In the special case £ = 0, the above correlators simplify as follows:
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Conclusions

The £7 = €5 = 0 correlator with insertions of T..; T was computed in the macroscopic limit R — oo.
We now consider correlators with There are six correlators involving the various components which can be
computed as follows:

(679 Tormn ()60 )= —iah@ Ry 9
tymy T7i(Ts ) £ymy AQ+Rw, (1272 2Q,R2D—1
e, (D+20—2) D1 Wy Yiymy (1) 8 Yoy my (n)
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{ (0-209p * ( ) 8t3t1 Smamy wg, LT,

* ’
weq afyezmz(")yflml(" ) Wiy N
we, e + wr, Yiymy () 8 Yeymy () — (1 ¢ 2) .

T.-; vanishes on the ground state and hence the quadratic contributions only come from the linear terms and the
quadratic term of T.;. The combination J; T+ instead leads to

Ag+Rw Q
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Conclusions

This correlator is related to the previous one. From the expansions in Eq. (??) it is clear that this has to be the case.

(078 To(romydn (v 000y = i QR |7)MR W
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Here, the quadratic term from J, vanishes after integration over n’, whereas the quadratic term from T,
remains finite after integration over n. This is so because it has to correct the energy by Rwez, in accordance with
the Ward identities.
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Conclusions

Both T.; and J; vanish on the ground state and hence the only quadratic contribution comes from the two linear
terms.
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This correlator is related to the TJ correlator due to the fact that h¥ T,-j = — T++, which holds by virtue of
conformal invariance.
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This correlator is proportional to hj since the quadratic term in the expansion of Tj only appears at cubic order in
the correlator. This is no longer the case once one includes higher-order corrections.
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Conclusions

In the special case £ = 0 the TJ correlators simplify significantly:
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The correlators J; T+ and T,;J in the special case £; = ¢, = 0 has appeared in the macroscopic limit R — oo.
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