Double scaling limits for field
theory defects

Diego Rodriguez-Gomez
U. of Oviedo

Based on 2202.03472€H2206.09935 w/ Jorge Russo

e e
R




o Studying defects in QFT is interesting for a number of reasons

 Explore all operators in a QFT. extended operators may be
sensible to finer details (e.g. topology of space, global properties
of gauge group...)

* |f topological, they give rise to generalized symmetries

 May serve as a diagnose the phases of the theory

* Describe impurities coupled to the system



However QFT (with/without defects) is hard...

One strategy which has proved very successful is to look for small parameters on
which one can expand. Celebrated examples include

* the semiclassical approximation
 large N

* large spin

In the recent past one new item added to the list

* large charge sectors

Inspired by this: can we access new information about defects in QFT7?77?
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Correlation functions in N=2
and large charge

* N=2 theories are interesting playgrounds to tinker with QFT: they have
SUSY enough so as to constrain dynamics to accessible limits but not too

much so as to “trivialize”
 Some of them have holographic duals

* |n particular, one can exploit SUSY to compute observables exactly

LOCALIZATION

This includes correlators, defect operators and even the partition function itself (meaningful for 4d N=2)



 The 4d superconformal algebra contains
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* Hence an interesting shortening condition is
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~  Chiral Primary Operator (CPO)

« CPO’s have a non-singular OPE (not to violate the BPS bound). As a

consequence, they form a ring: the chiral ring

* Their 2-point functions are
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Endowes the Coulomb branch of a
very interesting geometry...but
that’s another story. See
Papadodimas; Baggio, Niarchos &
Papadodimas



The 2-point functions can be mapped to the sphere
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To extract C, we can take the large x limit
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There is one subtlety, though: due to the conformal anomaly there can be mixing
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Remove this mixing by Gram-Schmidt orthogonalization!

Gerchkovitz, Gomis, Ishtiaque, Komargodski & Pufu, 1602.05971

Let us look to the correlators of the simplest operators 0,, = (Tr¢*)" in SU(N) SQCD
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The polynomial in n multiplying each order in the coupling is just the appropriate
so as to define the double scaling limit (at FIXED N!)

n — 00, g— 0, A = ¢°n = fixed ,

(Gauge instantons truly supressed!) Bourget, R-G & Russo, 1803.00580



 Going beyond this tower by explicit computation is hard. The next simplest
case is SU(3): there is only one more CPO. Explicitly computing the
correlators shows that the limit continues to exist

Beccaria, 1809.06280
Beccaria, 1810.10483

e |t turns out that the existence of the |Iimit Is rooted In the structure of the
correlators: the GS can be recasted as a matrix model

* Very sketchy: for SU(2) there is only one CPO, whose sphere correlators are derivatives of Z
wrt. the coupling. The flat space correlators are ratios of subdeterminants of the matrix of
derivatives

e |t turns out that each such subdeterminant can be written as a matrix integral: convert the
computation of correlators into a matrix model!
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 The 't Hooft limit of this matrix model is well defined: it is our double scaling limit (strictly
speaking, the latter is the weak 't Hooft coupling regime)

Grassi, Komargodski & Tizziano, 1908.10306
Beccaria, Galvagno & Hasan, 2001.06645
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(note that in any case, gauge instantons are safely supressed in this regime)



Wilson loops In the k-fold
symmetrized product

e Consider now circular Wilson loops in the k-fold symmetrized
representation. The exact formula is
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 For N=4 both the instanton and 1-loop contributions are 1



 The insertion is the character of the k-fold symm rep (of U(N)/SU(N)). This is easy
to compute: the generating function is by definition the PE of the fundamental.
Then
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e Introduce now kK = ng

» Then (we specify to U(N) N=4)
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* This suggests the limit FOR FIXED N

21, __ . __
g—0, k— o0, gk =r=1txed. ..
Beccaria, Giombi & Tseytlin
Cuomo, Komargodski, Mezei & Raviv-Moshe

* Note that in this limit gauge instantons are completely supressed (just like in
the large charge limit)



The N-th eigenvalue gets stabilized at a much larger scale than the rest...
so the integral breaks in two pieces
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 Doing the last integral (saddle) and putting all factors



° NOte that We could take N large provided it is much smaller than k
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Our result becomes then
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* | ets compare with the holographic/matrix model@large N result
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 What about SU(N)? Do
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 The a’s sum zero: relax this by introducing a delta
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* One recognizes the SU(N) result
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 The prefactor is a loop for the U(1) part
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e |f k>N this is a (leading) contribution: this observable is sensible to U vs SU!!!



 One can also compute correlators of loops with CPQO’s. This has info about the
OPE

e The first few such correlators are
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» Just as before in the large k limit the integral can be done via saddle point giving
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* A similar double scaling limit holds in general N=2 theories. For instance, for N=2"

c.f for SU(2) SQCD Cuomo, Komargodski, Mezei & Raviv-Moshe’ 22
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* In the same double scaling limit at large k one then finds
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* |t Is iInteresting to look to the decompatification limit of large MR. N=2*

undergoes a sequence of phase transitions...what about the large k loop? One
fin dS Russo & Zarembo
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* This suggests a potential non-analytic behavior at a* of order M. But this
corresponds to

Kk =8TMR

* ...s0 this happens “infinitely far away”: no phase transitions for this
observable

* Allin all, in the decompactification limit
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Defects iIn WF

* Using the same strategy we can also study lines in the WF fixed point near d=4,

6d . Arias-Tamargo, Russo & R-G,
. . . . Watanabe,
D.R-G. » Also a similar double-scaling limit exiStS Badel. Caomo. Monin & Rattazs.

Hellerman, Orlando, Reffert et al.

e Can be interpreted as effective description of large spin impurities in magnets
Cuomo, Komargodski, Mezei & Raviv-Moshe

* For instance, consider O(2N+1) near d=4
s [ Sloar + 4
S 109" + 7 (¢7)"
One may imagine the trivial line along one direction. It admits a deformation
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Then
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So imagine taking large n with everything else fixed: use saddle point. The
only relevant eq. can be easily solved
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We can use this to define the renormalized coupling
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 One can also compute correlators of defect fields as well as correlators of defects
themselves. For instance, for the latter
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 Assuming the same scaling
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 Near d=6 a similar story holds. Consider the proposed UV completion to the
quartic theory above 4d

Fei, Giombi & Klebanov '14
Giombi, Huang, Klebanov, Pufu & Tarnopolski '19
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 This is is the UV completion of the quartic theory. Upon Hubbar-Stronovich -
zation this theory is described by
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e For the HS field



* |In the sextic theory one can consider surface defects deformed as

L 2
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* This does not break the O(N) symmetry. A natural guess in the quartic theory
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 Assuming double scaling, we can use saddle point
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 Proceeding as in the 4d case, one can compute the defect beta function
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 This has a fixed point at

 One can also compute correlators of defects as well as defect fields...but
we’ll leave that for another day



Final comments

Inspired by the large charge developments, we introduced a double
scaling limit for defects

In the WF fixed near 4/6d we considered lines/surfaces: a fixed point
leading to a dCFT exists

One can compute correlators of defect operators/defects themselves

We introduced a novel double scaling limit for the k-fold symmetrized
Wilson loop

Allows to compute exact observables for finite N in gauge
theories (free of gauge instantons!)



* The loop distinguishes U vs SU...can this be seen holographically?

U vs SU encoded in a topological BF theory in AdS5...
Stop — N /CQ /\ dB2

e ...the fluxed D3 dual to the loop would source the RR 2-form...gives rise to boundary term?

e ...maybe one needs to do holography “the other way around”
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 The defect on the WF in this limit simplifies...can one study aspects of RG
flows?

* Perhaps toy models for interesting behaviors (fixed point
annihilation?)

 Can one study general aspects of RG flows such as entropy
extremization?



Many thanks!!!



