Double scaling limits for field theory defects

Diego Rodriguez-Gomez U. of Oviedo

- Studying defects in QFT is interesting for a number of reasons
- Explore all operators in a QFT: extended operators may be sensible to finer details (e.g. topology of space, global properties of gauge group...)
- If topological, they give rise to generalized symmetries
- May serve as a diagnose the phases of the theory
- Describe impurities coupled to the system
- However QFT (with/without defects) is hard...
- One strategy which has proved very successful is to look for small parameters on which one can expand. Celebrated examples include
- the semiclassical approximation
- large N
- large spin
- In the recent past one new item added to the list
- large charge sectors
- Inspired by this: can we access new information about defects in QFT???

Contents

- Motivation
- Local operators in N=2 SCFT's in 4d at large charge and a double scaling limit
- Taking it over to Wilson lines in the k-symm product
- Defects in Wilson-Fisher
- Final comments

Correlation functions in $\mathrm{N}=2$ and large charge

- $\mathrm{N}=2$ theories are interesting playgrounds to tinker with QFT: they have SUSY enough so as to constrain dynamics to accessible limits but not too much so as to "trivialize"
- Some of them have holographic duals
- In particular, one can exploit SUSY to compute observables exactly

LOCALIZATION

This includes correlators, defect operators and even the partition function itself (meaningful for $\mathbf{4 d} \mathbf{N}=\mathbf{2}$)

- The 4d superconformal algebra contains

$$
\left\{\bar{Q}_{\dot{\alpha}}^{a}, \bar{S}_{\dot{\beta}}^{b}\right\}=\epsilon_{\dot{\alpha} \dot{\beta}} \epsilon^{a b}\left(\Delta-\frac{R}{2}\right)+\epsilon^{a b} M_{\dot{\alpha} \dot{\beta}}+\epsilon_{\dot{\alpha} \dot{\beta}} J^{a b}
$$

- Hence an interesting shortening condition is
$\left[\bar{Q}_{\dot{\alpha}}^{a}, O\right]=0 \rightsquigarrow \Delta_{O}=\frac{R_{O}}{2}, j_{L}=s=0,\left(\operatorname{and} \mathrm{j}_{\mathrm{R}}=0\right) \longrightarrow$ Chiral Primary Operator (CPO)
- CPO's have a non-singular OPE (not to violate the BPS bound). As a consequence, they form a ring: the chiral ring
- Their 2-point functions are

$$
\left\langle O_{I}(0) \bar{O}_{\bar{J}}(x)\right\rangle=\frac{g_{I \bar{J}}\left(\tau^{i}, \bar{\tau}^{i}\right)}{|x|^{2 \Delta_{I}}} \delta_{\Delta_{I}, \Delta_{\bar{J}}}
$$

- The 2-point functions can be mapped to the sphere

$$
\left.\langle A(x) \bar{B}(0)\rangle=\left.\frac{C_{A B}}{|x|^{2 \Delta_{A}}} \delta_{\Delta_{A} \Delta_{B}} \rightsquigarrow\langle | x\right|^{2 \Delta_{A}} A(x) \bar{B}(0)\right\rangle=C_{A B} \delta_{\Delta_{A} \Delta_{B}}
$$

- To extract C, we can take the large x limit

$$
\lim _{|x| \rightarrow \infty}|x|^{2 \Delta_{A}} A(x)=4^{\Delta_{A}} \lim _{|x| \rightarrow \infty}\left(1+\frac{|x|^{2}}{4}\right)^{\Delta_{A}} A(x)
$$

- Since

$$
d s_{\mathbb{R}^{4}}^{2}=\left(1+\frac{|x|^{2}}{4}\right)^{4} d s_{\mathbb{S}^{4}}^{2}
$$

- ...it follows that $4^{\Delta_{A}}\langle A(N) \bar{B}(S)\rangle_{S^{4}}=C_{A B}$

Computed through a matrix integral thanks to localization

- There is one subtlety, though: due to the conformal anomaly there can be mixing

$$
O_{\Delta}^{\mathbb{R}^{4}} \rightarrow O_{\Delta}^{\mathbb{S}^{4}}+\frac{\alpha_{1}}{R^{2}} O_{\Delta-2}^{\mathbb{S}^{4}}+\frac{\alpha_{2}}{R^{4}} O_{\Delta-4}^{\mathbb{S}^{4}}+\cdots
$$

- Remove this mixing by Gram-Schmidt orthogonalization!
- Let us look to the correlators of the simplest operators $\mathcal{O}_{n}=\left(\operatorname{Tr} \phi^{2}\right)^{n}$ in SU(N) SQCD

$$
\begin{aligned}
\frac{G_{2 n}^{\mathrm{QCD}}}{G_{2 n}^{\mathcal{N}=4}} & =1-\frac{9 n\left(N^{2}+2 n-1\right) \zeta(3)}{4 \pi^{2}(\operatorname{Im} \tau)^{2}} \\
& +\frac{5 n\left(2 N^{2}-1\right)\left(3 N^{4}+(15 n-3) N^{2}+\left(20 n^{2}-15 n+4\right)\right) \zeta(5)}{4 \pi^{3} N\left(N^{2}+3\right)(\operatorname{Im} \tau)^{3}}+\cdots
\end{aligned} \quad G_{2 n}^{\mathcal{N}=4, \mathfrak{g}}=\frac{n!2^{2 n}}{(\operatorname{Im} \tau)^{2 n}} \alpha(1+\alpha)_{n-1}, \quad \alpha=\frac{1}{2} \operatorname{dim}(\mathfrak{g})
$$

- The polynomial in n multiplying each order in the coupling is just the appropriate so as to define the double scaling limit (at FIXED N!)

$$
n \rightarrow \infty, \quad g \rightarrow 0, \quad \lambda \equiv g^{2} n=\text { fixed }
$$

- Going beyond this tower by explicit computation is hard. The next simplest case is $\mathrm{SU}(3)$: there is only one more CPO. Explicitly computing the correlators shows that the limit continues to exist
- It turns out that the existence of the limit is rooted in the structure of the correlators: the GS can be recasted as a matrix model
- Very sketchy: for $\operatorname{SU}(2)$ there is only one CPO, whose sphere correlators are derivatives of Z wrt. the coupling. The flat space correlators are ratios of subdeterminants of the matrix of derivatives
- It turns out that each such subdeterminant can be written as a matrix integral: convert the computation of correlators into a matrix model!

$$
\operatorname{det} \mathcal{M}_{(n)}=\frac{1}{n!} \int_{0}^{\infty} \prod_{j=0}^{n-1} d x_{j} e^{-4 \pi \operatorname{Im} \tau x_{j}} x_{j}^{\frac{1}{2}} Z_{1-\operatorname{Loop}}\left(\sqrt{x_{j}}\right) \prod_{j<k}\left(x_{j}-x_{k}\right)^{2}
$$

- The 't Hooft limit of this matrix model is well defined: it is our double scaling limit (strictly speaking, the latter is the weak 't Hooft coupling regime)
(note that in any case, gauge instantons are safely supressed in this regime)

Wilson loops in the k-fold symmetrized product

- Consider now circular Wilson loops in the k-fold symmetrized representation. The exact formula is

$$
\left\langle W_{k}\right\rangle=\frac{1}{N} \frac{1}{Z_{N}} \int d^{N} a \prod_{i<j}\left(a_{i}-a_{j}\right)^{2} Z_{1-\mathrm{loop}} Z_{\text {inst }} e^{-\frac{8 \pi^{2}}{g^{2}} \sum_{i=1}^{N} a_{i}^{2}} W_{k},
$$

- For $\mathrm{N}=4$ both the instanton and 1 -loop contributions are 1
- The insertion is the character of the k -fold symm rep (of $\mathrm{U}(\mathrm{N}) / \mathrm{SU}(\mathrm{N})$). This is easy to compute: the generating function is by definition the PE of the fundamental. Then
- Hence in the end

$$
\left\langle W_{k}\right\rangle=\frac{(-1)^{N-1}}{Z_{U(N)}} \int d^{N} a \prod_{k<1}\left(a_{k}-a_{l}\right)^{2} Z_{1-\operatorname{loop}} Z_{\text {inst }} e^{-\frac{8 r^{2}}{\sigma^{2}}} \sum_{m=1}^{N} a^{2} \frac{q_{m}^{2}}{e^{2 \pi(N-1) a_{N}+2 k \pi a_{N}}} \prod_{j \neq N}{ }^{2 \pi a_{j}}-e^{2 \pi a_{N}} .
$$

- For SU(N) impose

$$
\sum_{i=1}^{N} a_{i}=0
$$

- Introduce now $\kappa=g^{2} k$
- Then (we specify to $\mathrm{U}(\mathrm{N}) \mathrm{N}=4$)

$$
\left\langle W_{k}\right\rangle=\frac{(-1)^{N-1}}{Z_{U(N)}} e^{\frac{k \kappa}{8}\left(1+\frac{N-1}{k}\right)^{2}} \int d^{N} a \prod_{k<l}\left(a_{k}-a_{l}\right)^{2} e^{-k \frac{8 \pi^{2}}{\kappa} \sum_{m=1}^{N-1} a_{m}^{2}}\left(\frac{e^{-k \frac{8 \pi^{2}}{\kappa}\left(a_{N}-a_{N}^{\star}\right)^{2}}}{\prod_{j \neq N} e^{2 \pi a_{j}}-e^{2 \pi a_{N}}}\right) . \quad a_{N}^{\star} \equiv \frac{\kappa}{8 \pi}\left(1+\frac{N-1}{k}\right)
$$

- This suggests the limit FOR FIXED N

$$
g \rightarrow 0, \quad k \rightarrow \infty, \quad g^{2} k=\kappa=\text { fixed }
$$

- Note that in this limit gauge instantons are completely supressed (just like in the large charge limit)
- The N-th eigenvalue gets stabilized at a much larger scale than the rest... so the integral breaks in two pieces

$$
\begin{aligned}
\left\langle W_{k}\right\rangle=\frac{(-1)^{N-1}}{Z_{U(N)}} e^{\frac{k \kappa}{8}\left(1+\frac{N-1}{k}\right)^{2}} \int d^{N} a \prod_{k<l}\left(a_{k}-a_{l}\right)^{2} e^{-k \frac{8 \pi^{2}}{\kappa} \sum_{m=1}^{N-1} a_{m}^{2}}\left(\frac{e^{-k \frac{8 \pi^{2}}{\kappa}\left(a_{N}-a_{N}^{\star}\right)^{2}}}{\prod_{j \neq N} e^{2 \pi g} /-e^{2 \pi a_{N}}}\right)
\end{aligned} \underbrace{8 \pi}_{\sim 0}\left(1+\frac{\kappa}{8}\right)
$$

- Doing the last integral (saddle) and putting all factors

$$
\left\langle W_{k}\right\rangle=\frac{1}{N!}\left(\frac{k \kappa}{4}\right)^{N-1} e^{\frac{k \kappa}{8}\left(1+\frac{N-1}{k}\right)^{2}}\left(e^{\frac{\kappa}{4}}-1\right)^{1-N}
$$

- Note that

We could take \mathbf{N} large provided it is much smaller than k

$$
\left\langle W_{k}\right\rangle=\frac{(-1)^{N-1}}{Z_{U(N)}} e^{\frac{k \kappa}{8}\left(1+\frac{N-1}{k}\right)^{2}} \int d^{N} a \prod_{k<l}\left(a_{k}-a_{l}\right)^{2} e^{-k \frac{8 \pi^{2}}{\kappa} \sum_{m=1}^{N-1} a_{m}^{2}}\left(\frac{e^{-k \frac{8 \pi^{2}}{\kappa}\left(a_{N}-a_{N}^{\star}\right)^{2}}}{\prod_{j \neq N} e^{2 \pi a_{j}}-e^{2 \pi a_{N}}}\right)
$$

- Our result becomes then

$$
\begin{array}{r}
\langle W\rangle=\frac{e^{-S}}{\sqrt{2 \pi N}}, \quad S=-\frac{k \kappa}{8}-N \log \left(\frac{k \kappa}{4 N}\right)-N+N \log \left(1-e^{-\frac{\kappa}{4}}\right) \\
\end{array}
$$

- Lets compare with the holographic/matrix model@large N result

$$
S_{\mathrm{DF}}=-2 N\left[\frac{k \sqrt{\lambda}}{4 N} \sqrt{1+\frac{k^{2} \lambda}{16 N^{2}}}+\operatorname{arcsinh}\left(\frac{k \sqrt{\lambda}}{4 N}\right)\right] \quad \longrightarrow \quad S_{D F} \sim-\frac{k \kappa}{8}-N \log \left(\frac{k \kappa}{4 N}\right)-N
$$

- What about $\operatorname{SU}(\mathrm{N})$? Do

$$
\sum_{i=1}^{N} a_{i}^{2}=\sum_{i=1}^{N} \hat{a}_{i}^{2}+\frac{1}{N}\left(\sum_{i=1}^{N} a_{i}\right)^{2}, \quad \hat{a}_{i}=a_{i}-\frac{1}{N} \sum_{i=1}^{N} a_{i}
$$

- Then

$$
\left\langle W_{k}\right\rangle=\frac{(-1)^{N-1}}{Z_{N}} \int d^{N} a \prod_{k<l}\left(\hat{a}_{k}-\hat{a}_{l}\right)^{2} e^{-\frac{8 \pi^{2}}{g^{2}} \sum_{m=1}^{N} \hat{a}_{m}^{2}} e^{-\frac{8 \pi^{2} N}{g^{2}} x^{2}-2 \pi k x} \frac{e^{2 \pi(N-1) \hat{a}_{N}+2 k \pi \hat{a}_{N}}}{\prod_{j \neq N} e^{2 \pi \hat{a}_{j}}-e^{2 \pi \hat{a}_{N}}}, \quad x=\frac{1}{N} \sum_{i=1}^{N} a_{i}
$$

- The a's sum zero: relax this by introducing a delta

$$
\left\langle W_{k}\right\rangle=\frac{(-1)^{N-1}}{Z_{N}} \int d^{N} \hat{a} \prod_{k<l}\left(\hat{a}_{k}-\hat{a}_{l}\right)^{2} e^{-\frac{8 \pi^{2}}{g^{2}} \sum_{m=1}^{N} \hat{a}_{m}^{2}} \frac{e^{2 \pi(N-1) \hat{a}_{N}+2 k \pi \hat{a}_{N}}}{\prod_{j \neq N} e^{2 \pi \hat{a}_{j}}-e^{2 \pi \hat{a}_{N}}} \delta\left(\sum_{i=1}^{N} \hat{a}_{i}\right)\left(\int d x e^{-\frac{8 \pi^{2} N}{g^{2}} x^{2}-2 \pi k x}\right)
$$

- One recognizes the $\operatorname{SU}(\mathrm{N})$ result

$$
\left\langle W_{k}\right\rangle_{U(N)}=\left(\frac{Z_{S U(N)}}{Z_{U(N)}} \int d x e^{-\frac{8 \pi^{2} N}{g^{2}} x^{2}-2 \pi k x}\right)\left\langle W_{k}\right\rangle_{S U(N)} \quad \longrightarrow \quad\left\langle W_{k}\right\rangle_{U(N)}=e^{\frac{q^{2} k^{2}}{8 N}}\left\langle W_{k}\right\rangle_{S U(N)}
$$

- The prefactor is a loop for the $\mathrm{U}(1)$ part

$$
\frac{Z_{S U(N)}}{Z_{U(N)}} \int d x e^{-\frac{8 \pi^{2} N}{g^{2}} x^{2}-2 \pi k x}=\frac{\int d a e^{-\frac{8 \pi^{2} 2}{g^{2}} a^{2}-2 \pi \frac{k}{N} a}}{\int d a e^{-\frac{8 \pi^{2}}{g^{2}} a^{2}}}
$$

- If $\mathrm{k}>\mathrm{N}$ this is a (leading) contribution: this observable is sensible to U vs SU!!!
- One can also compute correlators of loops with CPO's. This has info about the OPE
- The first few such correlators are

$$
\mathcal{O}_{1}=\operatorname{Tr} \phi-\frac{\langle\operatorname{Tr} \phi\rangle}{\langle\mathbb{1}\rangle} \mathbb{1}, \quad \mathcal{O}_{2}=\operatorname{Tr} \phi^{2}-\frac{\left\langle\operatorname{Tr} \phi^{2}\right\rangle}{\langle\mathbb{1}\rangle} \mathbb{1}
$$

- But $\frac{\left\langle\operatorname{Tr} \phi^{n}\right\rangle}{\langle 1\rangle} \sim g^{n} \sim \kappa^{\frac{n}{2}} k^{-n}$, so in this limit only the "leading term" contributes. To compute it

$$
\begin{aligned}
\left\langle\operatorname{Tr} \phi^{n_{1}} \cdots \operatorname{Tr} \phi^{n_{m}} W_{k}\right\rangle & =\frac{1}{Z_{U(N)}} \int d^{N} a \prod_{k<l}\left(a_{k}-a_{l}\right)^{2} Z_{1-\mathrm{loop}} Z_{\text {inst }} e^{-\frac{8 \pi^{2}}{g^{2}} \sum_{m=1}^{N} a_{m}^{2}} \\
& \times \frac{e^{2 \pi(N-1) a_{N}+2 k \pi a_{N}}}{\prod_{j \neq N}\left(e^{2 \pi a_{N}}-e^{2 \pi a_{j}}\right)}\left(\sum_{i=1}^{N} a_{i}^{n_{1}}\right) \cdots\left(\sum_{i=1}^{N} a_{i}^{n_{m}}\right) .
\end{aligned}
$$

- Just as before in the large k limit the integral can be done via saddle point giving

$$
\left\langle\operatorname{Tr} \phi^{n_{1}} \cdots \operatorname{Tr} \phi^{n_{m}} W_{k}\right\rangle=\frac{Z_{U(N-1)}}{Z_{U(N)}} e^{\frac{k \kappa}{8}\left(1+\frac{N-1}{k}\right)} \int d a_{N}\left(\frac{a_{N}^{2}}{e^{2 \pi a_{N}-1}}\right)^{N-1} a_{N}^{n_{1}+\cdots+n_{m}} e^{-k \frac{8 \pi^{2}}{\kappa}\left(a_{N}-\frac{\kappa}{8 \pi}\right)^{2}} .
$$

- Hence

$$
\left\langle\operatorname{Tr} \phi^{n_{1}} \cdots \operatorname{Tr} \phi^{n_{m}} W_{k}\right\rangle=\left(\frac{\kappa}{8 \pi}\right)^{n_{1}+\cdots+n_{m}}\left\langle W_{k}\right\rangle .
$$

- So finally

$$
\begin{aligned}
\left\langle\mathcal{O}_{\Delta} W_{k}\right\rangle & =\left(\frac{\kappa}{8 \pi}\right)^{\Delta}\left\langle W_{k}\right\rangle \quad\left\langle\mathcal{O}_{\Delta}(x) \mathcal{O}_{\Delta}(0)\right\rangle=\frac{C_{\Delta}}{|x|^{2 \Delta}}, \quad C_{\Delta} \equiv \frac{\Delta \lambda^{\Delta}}{(2 \pi)^{2 \Delta}} \\
& \left\langle\hat{\mathcal{O}}_{\Delta} W_{k}\right\rangle=\frac{1}{\sqrt{\Delta}}\left(\frac{k \kappa}{16 N}\right)^{\frac{\Delta}{2}}\left\langle W_{k}\right\rangle, \quad \begin{array}{c}
\text { Berenstein, Corrado, Fischler\& Maldacena '98 } \\
\text { Giombi, Ricci \& Trancaneli' 06 }
\end{array}
\end{aligned}
$$

- A similar double scaling limit holds in general $\mathrm{N}=2$ theories. For instance, for $\mathrm{N}=2^{*}$
c.f for $\mathrm{SU}(2) \mathrm{SQCD}$ Cuomo, Komargodski, Mezei \& Raviv-Moshe' 22

$$
\begin{array}{r}
\left\langle W_{k}\right\rangle_{\mathcal{N}=2^{*}}=\frac{1}{Z_{\mathcal{N}=2^{*}}} \int d^{N} a \prod_{i<j}^{N-1} \frac{\left(a_{i}-a_{j}\right)^{2} H\left(a_{i}-a_{j}\right)^{2}}{H\left(a_{i}-a_{j}+M\right) H\left(a_{i}-a_{j}-M\right)} e^{-\frac{8 \pi^{2}}{g^{2}} \sum_{m=1}^{N-1} a_{m}^{2}} \\
e^{\frac{k^{2} g^{2}}{8}\left(1+\frac{N-1}{k}\right)^{2}} \prod_{i=1}^{N-1} \frac{\left(a_{i}-a_{N}\right)^{2} H\left(a_{i}-a_{N}\right)^{2}}{H\left(a_{i}-a_{N}+M\right) H\left(a_{i}-a_{N}-M\right)} \frac{e^{-\frac{8 \pi^{2}}{g^{2}}\left(a_{N}-a_{N}^{*}\right)^{2}}}{\prod_{j \neq N}\left(e^{2 \pi a_{N}}-e^{2 \pi a_{j}}\right)},
\end{array}
$$

- Introducing the same variables

$$
\begin{gathered}
\left\langle W_{k}\right\rangle_{\mathcal{N}=2^{*}}=\frac{e^{\frac{k \kappa}{8}}\left(1+\frac{N-1}{k}\right)^{2}}{Z_{\mathcal{N}=2^{*}}} \int d^{N-1} a \prod_{i<j}^{N-1} \frac{\left(a_{i}-a_{j}\right)^{2} H\left(a_{i}-a_{j}\right)^{2}}{H\left(a_{i}-a_{j}+M\right) H\left(a_{i}-a_{j}-M\right)} e^{-\frac{8 \pi^{2} k}{k} \sum_{m=1}^{N-1} a_{m}^{2}} \\
\quad \int d a_{N}\left(\frac{H\left(a_{N}\right)^{2}}{H\left(a_{N}+M\right) H\left(a_{N}-M\right)}\right)^{N-1}\left(\frac{a_{N}^{2}}{\left.e^{2 \pi a_{N}-1}\right)^{N-1} e^{-k \frac{8 \pi^{2}}{k}\left(a_{N}-a_{N}^{*}\right)^{2}},}\right.
\end{gathered}
$$

- In the same double scaling limit at large k one then finds

$$
\left\langle W_{k}\right\rangle_{\mathcal{N}=2^{*}}=\left(\frac{H\left(a_{N}^{*}\right)^{2} H(M)^{2}}{H\left(a_{N}^{*}+M\right) H\left(a_{N}^{*}-M\right)}\right)^{N-1}\left\langle W_{k}\right\rangle_{\mathcal{N}=4}
$$

- It is interesting to look to the decompatification limit of large MR. $\mathrm{N}=\mathbf{2}^{*}$ undergoes a sequence of phase transitions...what about the large k loop? One finds

$$
\begin{aligned}
\log \left\langle W_{k}\right\rangle_{\mathcal{N}=2^{*}} & \approx \log \left\langle W_{k}\right\rangle_{\mathcal{N}=4}+2(N-1) \log H\left(a_{N}^{*}\right)-\frac{1}{2}(N-1) R^{2}\left[2 M^{2} \log (M R)^{2}\right. \\
& \left.-\left(M-a_{N}^{*}\right)^{2} \log \left(M-a_{N}^{*}\right)^{2} R^{2}-\left(M+a_{N}^{*}\right)^{2} \log \left(M+a_{N}^{*}\right)^{2} R^{2}\right] \\
& +(1-2 \gamma)(N-1)\left(R a_{N}^{*}\right)^{2} .
\end{aligned}
$$

- This suggests a potential non-analytic behavior at a* of order M. But this corresponds to

$$
\kappa=8 \pi M R
$$

- ...so this happens "infinitely far away": no phase transitions for this observable
- All in all, in the decompactification limit

$$
\log \left\langle W_{k}\right\rangle_{\mathcal{N}=2^{*}} \longrightarrow \log \left\langle W_{k}\right\rangle_{\mathcal{N}=4}+(N-1)\left(2 \log H\left(\frac{\kappa}{8 \pi}\right)+\frac{\kappa^{2}}{32 \pi^{2}}[2-\gamma+\log (M R)]\right)
$$

Defects in WF

- Using the same strategy we can also study lines in the WF fixed point near d=4, 6d.
D.R-G
- Also a similar double-scaling limit exists

Arias-Tamargo, Russo \& R-G
Watanabe
Badel, Cuomo, Monin \& Rattazzi
Hellerman, Orlando, Reffert et al.

- Can be interpreted as effective description of large spin impurities in magnets

Cuomo, Komargodski, Mezei \& Raviv-Moshe

- For instance, consider $\mathrm{O}(2 \mathrm{~N}+1)$ near $\mathrm{d}=4$

$$
S=\int \frac{1}{2}|\partial \vec{\varphi}|^{2}+\frac{g}{4}\left(\vec{\varphi}^{2}\right)^{2},
$$

- One may imagine the trivial line along one direction. It admits a deformation

$$
\mathcal{D}(\vec{z})=e^{-h \int d \tau \varphi^{2 N+1}(\tau, \vec{z})}=e^{-h \int d x \varphi^{2 N+1} \delta_{T}(\vec{x}-\vec{z})} \quad \longrightarrow \quad\langle\mathcal{D}(\vec{z})\rangle=\int e^{-\int \frac{1}{2}|\partial \vec{\varphi}|^{2}+\frac{g}{4}\left(\vec{\varphi}^{2}\right)^{2}+h \varphi^{2 N+1} \delta_{T}(\vec{x}-\vec{z})}
$$

- Assume $g=\frac{\lambda}{n}, \quad h=\nu n$
- Then

$$
\langle\mathcal{D}(\vec{z})\rangle=\int e^{-n S_{\text {eff }}}, \quad S_{\text {eff }}=\int \frac{1}{2}|\partial \vec{\phi}|^{2}+\frac{\lambda}{4}\left(\vec{\phi}^{2}\right)^{2}+\nu \phi^{2 N+1} \delta_{T}(\vec{x}-\vec{z}) .
$$

- So imagine taking large n with everything else fixed: use saddle point. The only relevant eq. can be easily solved

$$
\partial^{2} \phi^{2 N+1}-\lambda\left(\phi^{2 N+1}\right)^{3}-\nu \delta_{T}(\vec{x}-\vec{z})=0 .
$$

- Finally

$$
\begin{aligned}
S_{\mathrm{eff}}= & \left(-\frac{\nu^{2}}{2}+\frac{\lambda \nu^{4}}{128 \pi^{2} \epsilon}+\frac{\lambda \nu^{4}}{128 \pi^{2}}\left(3-\gamma_{E}+\log (4 \pi)\right)\right) T \int \frac{d^{d-1} \vec{p}}{(2 \pi)^{d-1}} \frac{1}{\vec{p}^{2}} \\
& -\frac{\lambda \nu^{4}}{128 \pi^{2}} T \int \frac{d^{d-1} \vec{p}}{(2 \pi)^{d-1}} \frac{\log |p|^{2}}{\vec{p}^{2}} .
\end{aligned}
$$

- Since $\frac{1}{\langle\mathcal{D}\rangle} \frac{d}{d \nu}\langle\mathcal{D}\rangle=-n \int\left\langle\phi^{2 N+1}\right\rangle \delta_{T}(\vec{x}-\vec{z})$
- We can use this to define the renormalized coupling

$$
\nu=\mu^{\frac{\epsilon}{2}}\left(\nu_{R}+\frac{\lambda \nu_{R}^{3}}{2(4 \pi)^{2} \epsilon}\right),
$$

- We can compute the beta function, which shows a fixed point

$$
\mu \frac{d \nu_{R}}{d \mu}=-\frac{\epsilon}{2} \nu_{R}+\frac{\lambda \nu_{R}^{3}}{(4 \pi)^{2}} \cdot \quad \longrightarrow \quad \nu_{R}^{2}=\frac{8 \pi^{2}}{\lambda} \epsilon, \quad \longleftrightarrow
$$

- ...where
a)

$$
\left\langle\phi^{2 N+1}\right\rangle=-\nu_{R} \int \frac{d^{d-1} \vec{p}}{(2 \pi)^{d-1}} \frac{e^{-i \vec{p} \cdot \vec{x}}}{|\vec{p}|^{2-\frac{\epsilon}{2}}} \sim \frac{1}{\left|\vec{x}_{T}\right|^{\frac{d-2}{2}}}
$$

- One can also compute correlators of defect fields as well as correlators of defects themselves. For instance, for the latter

$$
\left\langle\mathcal{D}\left(z_{1}\right) \mathcal{D}\left(z_{2}\right)\right\rangle=\int e^{-\int \frac{1}{2}|\partial \vec{\varphi}|^{2}+\frac{g}{4}\left(\vec{\varphi}^{2}\right)^{2}+h \varphi^{2 N+1} \delta_{T}\left(\vec{x}-\vec{z}_{1}\right)+h \varphi^{2 N+1} \delta_{T}\left(\vec{x}-\vec{z}_{2}\right)} .
$$

- Assuming the same scaling

$$
\left\langle\mathcal{D}\left(z_{1}\right) \mathcal{D}\left(z_{2}\right)\right\rangle=\int e^{-n S_{\text {eff }}}, \quad S_{\text {eff }}=\int \frac{1}{2}|\partial \vec{\phi}|^{2}+\frac{\lambda}{4}\left(\vec{\phi}^{2}\right)^{2}+\nu \phi^{2 N+1} \delta_{T}\left(\vec{x}-\vec{z}_{1}\right)+\nu \phi^{2 N+1} \delta_{T}\left(\vec{x}-\vec{z}_{2}\right) .
$$

- The saddle point eqs. are

$$
\partial^{2} \phi^{2 N+1}-\nu \delta_{T}\left(\vec{x}-\vec{z}_{1}\right)-\nu \delta_{T}\left(\vec{x}-\vec{z}_{2}\right)=0 . \quad \longrightarrow \quad \phi^{2 N+1}=\rho_{1}(\vec{x})+\rho_{2}(\vec{x}), \quad \rho_{i}(\vec{x})=-\nu \int d y G(x-y) \delta_{T}\left(\vec{y}-\vec{z}_{i}\right) .
$$

- So finally

a)

$$
\left\langle\mathcal{D}\left(z_{1}\right) \mathcal{D}\left(z_{2}\right)\right\rangle=\left\langle\mathcal{D}\left(z_{1}\right)\right\rangle\left\langle\mathcal{D}\left(z_{2}\right)\right\rangle e^{-n S_{\mathrm{I}}} \longrightarrow S_{\mathrm{I}}=-\left(\frac{\nu_{R}^{2}}{4 \pi}+\frac{3 \lambda \nu_{R}^{4}}{512 \pi}-\frac{\lambda \nu_{R}^{4}}{64 \pi^{3}}\left(3+\gamma_{E}+\log (4 \pi)\right)\right) \frac{T}{\left|\vec{z}_{1}-\vec{z}_{2}\right|^{1+\left(-\epsilon+\frac{\lambda \nu_{R}^{2}}{8 \pi^{2}}\right)}} \cdot \longrightarrow S_{\mathrm{I}}=-\left(\frac{\nu_{R}^{2}}{4 \pi}+\frac{3 \lambda \nu_{R}^{4}}{512 \pi}-\frac{\lambda \nu_{R}^{4}}{64 \pi^{3}}\left(3+\gamma_{E}+\log (4 \pi)\right)\right) \frac{T}{\left|\vec{z}_{1}-\vec{z}_{2}\right|}
$$

- Near $\mathrm{d}=6$ a similar story holds. Consider the proposed UV completion to the quartic theory above 4d

Fei, Giombi \& Klebanov '14
Giombi, Huang, Klebanov, Pufu \& Tarnopolski '19

$$
S=\int \frac{1}{2}|\partial \vec{\varphi}|^{2}+\frac{1}{2} \partial \eta^{2}+\frac{g_{1}}{2} \eta|\vec{\varphi}|^{2}+\frac{g_{2}}{6} \eta^{3} . \quad g_{1 \star}=\sqrt{\frac{6(4 \pi)^{3}}{2 N}} \epsilon\left(1+\mathcal{O}\left(\frac{1}{N}\right)\right), \quad g_{2 \star}=6 \sqrt{\frac{6(4 \pi)^{3}}{2 N}} \epsilon\left(1+\mathcal{O}\left(\frac{1}{N}\right)\right)
$$

- This is is the UV completion of the quartic theory. Upon Hubbar-Stronovich zation this theory is described by

$$
S_{\text {quartic }}=\int \partial \vec{\xi}^{2}+\sigma \vec{\xi}^{2},
$$

- For the HS field

$$
\langle\sigma(x) \sigma(0)\rangle \sim \frac{1}{x^{4}}
$$

- In the sextic theory one can consider surface defects deformed as

$$
\mathcal{D}=e^{-h \int d^{2} x \eta} .
$$

- This does not break the $\mathrm{O}(\mathrm{N})$ symmetry. A natural guess in the quartic theory

$$
\mathcal{D}_{\text {quartic }}=e^{-\hat{h} \int d^{2} x \bar{\xi}^{2}}
$$

- Assuming double scaling, we can use saddle point

$$
S_{\mathrm{eff}}=n \int \frac{1}{2}|\partial \vec{\phi}|^{2}+\frac{1}{2} \partial \rho^{2}+\frac{h_{1}}{2} \rho|\vec{\phi}|^{2}+\frac{h_{2}}{6} \rho^{3}+\nu \rho \delta_{T}(\vec{x}) \quad g_{i} \sqrt{n}=h_{i}, h=\nu \sqrt{n}
$$

- Proceeding as in the 4d case, one can compute the defect beta function

$$
\beta_{\nu}=-\frac{\epsilon}{2} \nu_{R}-\frac{h_{2} \nu_{R}^{2}}{16 \pi^{2}} .
$$

- This has a fixed point at

$$
\nu_{R}=-\frac{8 \pi^{2} \epsilon}{h_{2}} .
$$

- One can also compute correlators of defects as well as defect fields...but we'll leave that for another day

Final comments

- Inspired by the large charge developments, we introduced a double scaling limit for defects
- In the WF fixed near 4/6d we considered lines/surfaces: a fixed point leading to a dCFT exists
- One can compute correlators of defect operators/defects themselves
- We introduced a novel double scaling limit for the k -fold symmetrized Wilson loop

Allows to compute exact observables for finite \mathbf{N} in gauge theories (free of gauge instantons!)

- The loop distinguishes U vs SU...can this be seen holographically?
- U vs SU encoded in a topological BF theory in AdS5...

$$
S_{\mathrm{top}}=N \int C_{2} \wedge d B_{2}
$$

- ...the fluxed D3 dual to the loop would source the RR 2-form...gives rise to boundary term?
- ...maybe one needs to do holography "the other way around"

- The defect on the WF in this limit simplifies...can one study aspects of RG flows?
- Perhaps toy models for interesting behaviors (fixed point annihilation?)
- Can one study general aspects of RG flows such as entropy extremization?
- ...

Many thanks!!!

