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Introduction



Conformal Field Theory

Theories with conformal invariance play a big role in theoretical and
experimental physics. Some examples are:

• Critical Phenomena
• Renormalization group
• AdS/CFT
• String theory

A CFT is determined by it is conformal data {Oi, {∆i, Cijk}}.

The standard method to deal with interacting QFTs is perturbation
theory. Though it is a powerful tool, also has limitations. For
example:

• Perturbative expansions have a zero radius of convergence.
• Cannot capture non-perturbative effects.
• Multileg amplitudes (multiparticle production).
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Resurgence

It is a well known fact that the large order behavior of the
perturbative expansion contains non-trivial information that is lost
in the perturbative regime.

Given a perturbative expansion

O(x) =
∑
n
cnxn, (1)

we have:

• If the series convergence, cn contains information about the
singularities of O(x).

• If the series diverge factorially, cn contains information about
the non-perturbative sectors of the theory.
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Darboux’s theorem

Given a function which has a convergent perturbative series, the
Darboux’s theorem relates the large order behaviour of the
coefficients with the singularities of the function. Concretely if
O(x) =

∑
n cnxn has a branch cut around at x0

O(x) = f(x)
(
1− x

x0

)−p
+ analytic , x→ x0, (2)

For large n we have

cn ∼
1
xn0

[
f (x0)

(
n+ p− 1

n

)
− x0f′ (x0)

(
n+ p− 2

n

)
− . . .

]
, (3)

where x0 corresponds to the nearest singularity of O(x) around the
origin.

p = 1+ lim
n→∞

n
(
x0

cn
cn−1

− 1
)
, (4)

f (x0) = lim
n→∞

cn(
1
x0

)n( n+ p− 1
n

) . (5)
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Resurgence of the large-charge expansion

Dondi et al 1, studied the spectrum of charged operators in the O(2N)
model in d = 3 in the double scaling limit

N→ ∞, Q→ ∞, q̂ =
Q
2N = fixed, (6)

In this limit the scaling dimension ∆ = ∆(q̂) has different
behaviours for small and large q̂. In particular, for small q̂ the
perturbative series convergent while for large q̂ is (2n)! divergent.
The central object to compute non-operturbative corrections was

Tr e∆Sd−1 t. (7)

Here it was found that the non-perturbative contribution have a
geometrical origin given by the wordline instantons.
1Resurgence of the large-charge expansion. Dondi, Kalogerakis, Orlando, Reffert 2001.
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Goal

Our goal was to understand the analytic properties of the
semiclassical expansion for charged operators in different models.

• O(N) model in d = 4− ϵ and d = 3− ϵ in the double scaling limit

Q→ ∞, g→ 0, gQ = fixed, (8)

where g is the interacting coupling constant. Here the scaling
dimension takes the form

∆Q =
1
g∆−1(gQ) + ∆0(gQ) + ... (9)

We studied the small and large gQ expansion for ∆−1 and ∆0.
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O(N) in d = 3− ϵ

The Lagrangian for the O(N) model with a sixth interaction is

L =
1
2∂

µϕi∂µϕi +
g2

8× 3! (ϕiϕi)
3
. (10)

In d = 3− ϵ the IR fixed point has the form
g2

(4π)2 =
2ϵ

22+ 3N , (11)

Here the beta function is zero at one-loop for d = 3, therefore the
theory is one-loop invariant at d = 3. The leading and next to
leading scaling dimension are [2]2

∆−1(gQ) = gQF−1
(
g2Q2
2π2

)
, F−1(x) =

1+
√
1+ x+ x

3√
2(1+

√
1+ x) 32

, x = g2Q2
2π2 ,

(12)

∆0(gQ) = ∆
(a)
0 (gQ) +

(
N
2 − 1

)
∆

(b)
0 (gQ), (13)

2Feynman diagrams and the large charge expansion in 3ϵ dimensions, Rattazzi et al.
2019. 6



where

∆
(a)
0 (gQ) = 1

2

∞∑
ℓ=0

nℓ [ω+(ℓ) + ω−(ℓ)] (14)

∆
(b)
0 (gQ) =

∞∑
ℓ=0

nℓω∗(ℓ) (15)

Here the dispersion relations are

ω2±(ℓ) = J2ℓ + 2
(
2µ2 − (d− 2)2

4

)
± 2

√
J2ℓµ2 +

(
2µ2 − (d− 2)2

4

)2
,

(16)

ω∗(ℓ) =
√
J2ℓ + µ2. (17)

The spectrum contains:

• A gapless mode ω− with velocity v = 1√
2 .

• A gapped mode with mass ω+(0) = 2
√
2µ2 − (d−2)2

4 .
• (N-2) spectator modes with mass ω∗(0) = µ.

Here µ is related to the charge Q via µ = 1
2
√
2

√
1+

√
1+ g2Q2

2π2 . 7



Small and large expansion

Considering these definitions we can study the expansion for small
and large values x = g2Q2

2π2 . Numerically, using the Darboux’s theorem
we found:

• Small x expansion:

∆−1(x) = f−1(x)(1+ x)3/2 + analytic, (18)
∆0(x) = f0(x)(1+ x)1/4 + g0(x,N)(1+ x)1/2 + analytic . (19)

• Large x expansion:

∆−1(x) = f−1(x)(1+ x)3/2 + analytic. (20)

It is interesting to notice that at x = −1 radial mode ω− becomes
massless.

On the other hand, the story it is completely different for ∆0(x).
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We will only focus on ∆
(b)
0 (x)

∆
(b)
0 =

∞∑
l=0

(2ℓ+ 1)
√
µ2 + ℓ(ℓ+ 1), (21)

=
1
µ

∑
k=0

akµ−2k, (22)

where

ak =
k+2∑
m=1

(−1)k+1B2mΓ
(
k+ 1

2
)

4
√
πmΓ(k+ 2)

[
2
(

k+ 1
−k+ 2m− 3

)
+

(
k+ 1

−k+ 2m− 2

)]
.

(23)

the large order behaviour is given

ak ≈ −π−2k−5Γ

(
k+ 1

2

)
Γ

(
k+ 5

2

)
, (24)

which implies that the perturbative series has a double-factorially
divergence.
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According to resurgence theory we can promote this asymptotic
series to a transeries of the form

ϕ(z) = ϕ(0)(z) +
∑
j ̸=0

σje−Aj/z
1/βj z−bj/βjΦ(j)(z), Φ(j)(z) ∼

∞∑
i=0

a(j)i z
i/βj ,

(25)

where the parameters βj,Aj and bj are encoded in the large order
behaviour of the ak coefficients as

ak ∼
∑
j

Sj
2πi

βj

Aβjk+bjj

∞∑
i=0

a(j)i A
i
jΓ
(
βjk+ bj − i

)
. (26)

We focused only on the leading term

âk ≡ a(m=k+2)
k

∣∣∣
k→k−2

= −π−2k−1Γ

(
k+ 1

2

)
Γ

(
k− 3

2

)
ζ(2k). (27)

Using the following relation

22kΓ
(
k+ 1

2

)
Γ

(
k− 3

2

)
=

√
π

2

∞∑
i=0

γiΓ

(
2k− 3

2 − i
)
. (28)
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We found

âk = − 1
4π2

∑
j=1

j−3/2
(2πj)2k−3/2

∑
i=0

γiΓ

(
2k− 3

2 − i
)

(29)

Identifying the coefficients of the transeries as

βj = 2, bj = −3/2, Aj = 2πj,
Sj
2πia

(j)
0 = − γ0

j3/28π2 , a(j)i>0 =
a(j)0
(2πj)i

γi
γ0

(30)

the non-perturbative corrections take the form

∆
(b)
0 ⊃

∑
j=1

e−2πjµµ3/2
∑
i=0

a(j)i µ
−i (31)

in terms of the charge

∆
(b)
0 ⊃ (gQ)5/4

∑
j=1

exp

(
−
√
π

23/4 j
√
gQ
)∑

i=0

a(j)i
(
27/4

√
π
)i

(gQ)−i/2 (32)

similarly to [1] the non-perturbative corrections scales as e−
√
Q.
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O(N) in d = 4− ϵ

Now we will focus on the O(N) model in d = 4− ϵ with quartic
interaction

S =

∫
ddx

(
(∂ϕi)

2

2 +
(4π)2g0
4! (ϕiϕi)

2
)

(33)

This model exhibit a weakly coupled W-F fixed point

g∗(ϵ) = 3ϵ
8+ N + O

(
ϵ2
)

(34)

The leading contribution ∆−1 read as

4∆−1
g∗Q =

3 2
3

(
x+

√
−3+ x2

) 1
3

3 1
3 +

(
x+

√
−3+ x2

) 2
3
+

3 1
3

(
3 1
3 +

(
x+

√
−3+ x2

) 2
3
)

(
x+

√
−3+ x2

) 1
3

,

(35)

where x = 6g∗Q while ∆0 is given by

∆0 =
1
2

∞∑
ℓ=0

nℓ [ω+(ℓ) + ω−(ℓ) + (N− 2)ω∗(ℓ)] , (36) 12



Small and large x expansion

Using the Darboux’s theorem we found that the small large

• Small x expansion:

∆−1 = f−1(x)
(
1+ x√

3

)3/2
+ analytic , (37)

∆0 = f0(x)
(
1+ x√

3

)1/4
+ g0(x,N)

(
1+ x√

3

)1/2
+ analytic

(38)

• Large x expansion:

∆−1 = f−1(x)
(
1+ x√

3

)3/2
+ analytic (39)

Again, the point x = −
√
3 corresponds to the value of Q for which the

radial mode becomes massless.
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Using this we can test a claim made in [3]3, about the relation
between different orders in the semiclassical expansion. If
∆j =

∑
n ajn(gQ)n the coefficients should obey

aj+1,n−1
aj,n

≈ n (40)

Solving the previous recursive relation we find

aj,n = bj
(

1
−
√
3

)n( n+ j− 3/2
n

)[
1+ O

(
1
n

)]
(41)

According to the Darboux’s theorem all the ∆j should be
non-analytic around x = −

√
3

∆j = fj(x)
(
1+ x√

3

)1/2−j
+ analytic (42)

Nevertheless this expression does not contains all the information of
the singularity.
3The Epsilon Expansion Meets Semiclassics , Rattazzi et al. 2020
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Different from the d = 3− ϵ case, the large x expansion of ∆(b)
0 is

convergent

∆
(b)
0 (gQ) =

∞∑
ℓ=0

(ℓ+ 1)2
√
µ2 + ℓ(ℓ+ 2) (43)

=
1

Γ(s)

∫ ∞

0
dtts−1e−µ2t Tr

(
e∆S3−ϵ t

)∣∣∣∣
s=−1/2

(44)

=
∑
k=0

ak
Γ
(
−1/2+ k− 3−ϵ

2
)

−2
√
π

µ4−ϵ−2k, (45)

where ak are the coefficients of the heat kernel expansion
Tr
(
e∆S3−ϵ t

)
=
∑

k=0 aktk+
3−ϵ
2 . Due to the Gamma function in the

numerator, the terms with k = 0, 1, 2 diverge in the limit ϵ→ 0 and
need to be renormalized.
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For example, the k = 0 term is given by

−a0
Γ(−2+ ϵ/2)

2
√
π

µ4−ϵ =

[
− 1
8ϵ +

1
32 (4γE − 5− 4 log(2)) + 1

8 log(µ) + O(ϵ)
]
µ4

(46)

By renormalizing the first three coefficients, we obtain a close form
for ∆(b)

0

∆
(b)
0 = −5µ

4

32 +
µ2

6 − 1
20 +

1
8
(
µ2 − 1

)2(
log

(
µ− 1

µ

)
+ γE − log(2)

)
(47)

It follows that ∆(b)
0 has an esential singularity at µ = 0 and two

logarithmic branch cuts at from µ = −1 to µ = −∞ and from µ = 0
to µ = 1
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Monopoles Operators

Now we apply our same analysis to a different model. The action for
QED3 in 3 dimensions is given by

S =

∫
d3x

 1
4e2 FµνF

µν +

Nf∑
i=1

ψ̄i(∂ + iA)ψi
 (48)

This theory has associated a topological current

Jµ =
1
4π ϵµvρF

vρ (49)

For large Nf the theory flows to a conformal theory. Mapping the
theory on the sphere we obtain

∆Q = EQ
[
AQ
]
≡ − log ZS2×R

[
AQ
]

(50)
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The leading contribution read as

∆−1 = 4
∞∑

ℓ=Q+1
ℓ
√
ℓ2 − Q2 = Q3/2

∞∑
k=0

ak
1
Qk (51)

where the coefficients ak are given by

ak =
2

π2k! (−1)
k+1 1

(4π)k Γ
(
k− 3

2

)
Γ

(
k+ 5

2

)
sin
(π
4 (2k+ 1)

)
ζ

(
k+ 3

2

)
(52)

this series is asymptotic. The associated Borel transform read as

B
[
∆−1

Q3/2

]
(t) =

∞∑
k=0

ak
k!
tk (53)

=
∞∑
m=1

(i− 1)
√
2πm3/2

[
2F1

(
−
3
2
,
5
2
; 1;−

it
4mπ

)
+ i2F1

(
−
3
2
,
5
2
; 1;

it
4mπ

)]
(54)

Here 2F1(a,b; c; x) denotes the Hypergeometric function, which can
be analytically continued in the complex plane along any path
avoiding the branch points at x = 1 and x = ∞.
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Therefore B
[
∆−1
Q3/2

]
(t) features an infinite series of poles

t = 4πim,m ∈ Z. Therefore, both lateral summation coincide. The
resumed serie takes the form

∆−1 = Q5/2
∫ ∞

0
dte−QtB

[
∆−1
Q3/2

]
(t) (55)

=
∑ 2iQ2

πm
[
exK2(x)− e−xK2(−x)

]
, x ≡ 2iπmQ (56)

where K2(x) is the modified Bessel function of the second kind.
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Conclusions



Conclusions

Considering the semiclassical expansion

∆Q =
1
g∆−1(x) + ∆0(x) + ... (57)

We conclude that:

• The singularities of ∆−1 and ∆0, for small and large x are strickly
related to the possitivity of the masses of the spectrum. Even
more, their nature is exactly the same in d = 4− ϵ and d = 3− ϵ.

• The form of the of the non-perturbative contributions does not
depend of the double scaling. Their origin is merely geometric.

• The behaviour of the large x expansion for ∆0 is completely
different in d = 3− ϵ and d = 4− ϵ. While in the first case ∆0
acquires non-perturbative contributions from wordline
instantons, in d = 4− ϵ they do not appear, leading to an
analytic expression.
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Thank you!
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