The analytic structure of the large charge expansion

Matías Torres
In collaboration with Oleg Antipin, Jahmall Bersini and Francesco Sannino

Introduction

Conformal Field Theory

Theories with conformal invariance play a big role in theoretical and experimental physics. Some examples are:

- Critical Phenomena
- Renormalization group
- AdS/CFT
- String theory

A CFT is determined by it is conformal data $\left\{\mathcal{O}_{i},\left\{\Delta_{i}, C_{i j k}\right\}\right\}$.
The standard method to deal with interacting QFTs is perturbation theory. Though it is a powerful tool, also has limitations. For example:

- Perturbative expansions have a zero radius of convergence.
- Cannot capture non-perturbative effects.
- Multileg amplitudes (multiparticle production).

Resurgence

It is a well known fact that the large order behavior of the perturbative expansion contains non-trivial information that is lost in the perturbative regime.

Given a perturbative expansion

$$
\begin{equation*}
\mathcal{O}(x)=\sum_{n} c_{n} x^{n} \tag{1}
\end{equation*}
$$

we have:

- If the series convergence, c_{n} contains information about the singularities of $\mathcal{O}(x)$.
- If the series diverge factorially, c_{n} contains information about the non-perturbative sectors of the theory.

Darboux's theorem

Given a function which has a convergent perturbative series, the Darboux's theorem relates the large order behaviour of the coefficients with the singularities of the function. Concretely if $\mathcal{O}(x)=\sum_{n} c_{n} x^{n}$ has a branch cut around at x_{0}

$$
\begin{equation*}
\mathcal{O}(x)=f(x)\left(1-\frac{x}{x_{0}}\right)^{-p}+\text { analytic }, \quad x \rightarrow x_{0} \tag{2}
\end{equation*}
$$

For large n we have

$$
\begin{equation*}
c_{n} \sim \frac{1}{x_{0}^{n}}\left[f\left(x_{0}\right)\binom{n+p-1}{n}-x_{0} f^{\prime}\left(x_{0}\right)\binom{n+p-2}{n}-\ldots\right], \tag{3}
\end{equation*}
$$

where x_{0} corresponds to the nearest singularity of $\mathcal{O}(x)$ around the origin.

$$
\begin{align*}
& p=1+\lim _{n \rightarrow \infty} n\left(x_{0} \frac{c_{n}}{c_{n-1}}-1\right), \tag{4}\\
& f\left(x_{0}\right)=\lim _{n \rightarrow \infty} \frac{c_{n}}{\left(\frac{1}{x_{0}}\right)^{n}(n+p-1)} . \tag{5}
\end{align*}
$$

Resurgence of the large-charge expansion

Dondi et al ${ }^{1}$, studied the spectrum of charged operators in the $O(2 \mathrm{~N})$ model in $d=3$ in the double scaling limit

$$
\begin{equation*}
N \rightarrow \infty, \quad Q \rightarrow \infty, \quad \hat{q}=\frac{Q}{2 N}=\text { fixed } \tag{6}
\end{equation*}
$$

In this limit the scaling dimension $\Delta=\Delta(\hat{q})$ has different behaviours for small and large \hat{q}. In particular, for small \hat{q} the perturbative series convergent while for large \hat{q} is $(2 n)$! divergent. The central object to compute non-operturbative corrections was

$$
\begin{equation*}
\operatorname{Tr} e^{\Delta_{s^{d-1}} t} \tag{7}
\end{equation*}
$$

Here it was found that the non-perturbative contribution have a geometrical origin given by the wordline instantons.

[^0]
Goal

Our goal was to understand the analytic properties of the semiclassical expansion for charged operators in different models.

- $O(N)$ model in $d=4-\epsilon$ and $d=3-\epsilon$ in the double scaling limit

$$
\begin{equation*}
Q \rightarrow \infty, \quad g \rightarrow 0, \quad g Q=\text { fixed } \tag{8}
\end{equation*}
$$

where g is the interacting coupling constant. Here the scaling dimension takes the form

$$
\begin{equation*}
\Delta_{Q}=\frac{1}{g} \Delta_{-1}(g Q)+\Delta_{0}(g Q)+\ldots \tag{9}
\end{equation*}
$$

We studied the small and large $g Q$ expansion for Δ_{-1} and Δ_{0}.

$O(N)$ in $d=3-\epsilon$

The Lagrangian for the $O(N)$ model with a sixth interaction is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial^{\mu} \phi_{i} \partial_{\mu} \phi_{i}+\frac{g^{2}}{8 \times 3!}\left(\phi_{i} \phi_{i}\right)^{3} \tag{10}
\end{equation*}
$$

In $d=3-\epsilon$ the IR fixed point has the form

$$
\begin{equation*}
\frac{g^{2}}{(4 \pi)^{2}}=\frac{2 \epsilon}{22+3 N}, \tag{11}
\end{equation*}
$$

Here the beta function is zero at one-loop for $d=3$, therefore the theory is one-loop invariant at $d=3$. The leading and next to leading scaling dimension are [2] ${ }^{2}$
$\Delta_{-1}(g Q)=g Q F_{-1}\left(\frac{g^{2} Q^{2}}{2 \pi^{2}}\right), \quad F_{-1}(x)=\frac{1+\sqrt{1+x}+\frac{x}{3}}{\sqrt{2}(1+\sqrt{1+x})^{\frac{3}{2}}}, \quad x=\frac{g^{2} Q^{2}}{2 \pi^{2}}$,

$$
\begin{equation*}
\Delta_{0}(g Q)=\Delta_{0}^{(a)}(g Q)+\left(\frac{N}{2}-1\right) \Delta_{0}^{(b)}(g Q) \tag{12}
\end{equation*}
$$

[^1]where
\[

$$
\begin{align*}
& \Delta_{0}^{(a)}(g Q)=\frac{1}{2} \sum_{\ell=0}^{\infty} n_{\ell}\left[\omega_{+}(\ell)+\omega_{-}(\ell)\right] \tag{14}\\
& \Delta_{0}^{(b)}(g Q)=\sum_{\ell=0}^{\infty} n_{\ell} \omega_{*}(\ell) \tag{15}
\end{align*}
$$
\]

Here the dispersion relations are

$$
\begin{align*}
& \omega_{ \pm}^{2}(\ell)=\Omega_{\ell}^{2}+2\left(2 \mu^{2}-\frac{(d-2)^{2}}{4}\right) \pm 2 \sqrt{\rho_{\ell}^{2} \mu^{2}+\left(2 \mu^{2}-\frac{(d-2)^{2}}{4}\right)^{2}} \tag{16}\\
& \omega_{*}(\ell)=\sqrt{\rho_{\ell}^{2}+\mu^{2}} .
\end{align*}
$$

The spectrum contains:

- A gapes mode ω_{-}with velocity $v=\frac{1}{\sqrt{2}}$.
- A gapped mode with mass $\omega_{+}(0)=2 \sqrt{2 \mu^{2}-\frac{(d-2)^{2}}{4}}$.
- $(\mathrm{N}-2)$ spectator modes with mass $\omega_{*}(0)=\mu$.

Here μ is related to the charge Q via $\mu=\frac{1}{2 \sqrt{2}} \sqrt{1+\sqrt{1+\frac{g^{2} Q^{2}}{2 \pi^{2}}}}$.

Small and large expansion

Considering these definitions we can study the expansion for small and large values $x=\frac{g^{2} Q^{2}}{2 \pi^{2}}$. Numerically, using the Darboux's theorem we found:

- Small x expansion:

$$
\begin{align*}
\Delta_{-1}(x) & =f_{-1}(x)(1+x)^{3 / 2}+\text { analytic } \tag{18}\\
\Delta_{0}(x) & =f_{0}(x)(1+x)^{1 / 4}+g_{0}(x, N)(1+x)^{1 / 2}+\text { analytic } \tag{19}
\end{align*}
$$

- Large x expansion:

$$
\begin{equation*}
\Delta_{-1}(x)=f_{-1}(x)(1+x)^{3 / 2}+\text { analytic } \tag{20}
\end{equation*}
$$

It is interesting to notice that at $x=-1$ radial mode ω_{-}becomes massless.

On the other hand, the story it is completely different for $\Delta_{0}(x)$.

We will only focus on $\Delta_{0}^{(b)}(x)$

$$
\begin{align*}
\Delta_{0}^{(b)} & =\sum_{l=0}^{\infty}(2 \ell+1) \sqrt{\mu^{2}+\ell(\ell+1)}, \tag{21}\\
& =\frac{1}{\mu} \sum_{k=0} a_{k} \mu^{-2 k} \tag{22}
\end{align*}
$$

where

$$
\begin{equation*}
a_{k}=\sum_{m=1}^{k+2} \frac{(-1)^{k+1} B_{2 m} \Gamma\left(k+\frac{1}{2}\right)}{4 \sqrt{\pi} m \Gamma(k+2)}\left[2\binom{k+1}{-k+2 m-3}+\binom{k+1}{-k+2 m-2}\right] . \tag{23}
\end{equation*}
$$

the large order behaviour is given

$$
\begin{equation*}
a_{k} \approx-\pi^{-2 k-5} \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(k+\frac{5}{2}\right), \tag{24}
\end{equation*}
$$

which implies that the perturbative series has a double-factorially divergence.

According to resurgence theory we can promote this asymptotic series to a transeries of the form

$$
\begin{equation*}
\phi(z)=\phi^{(0)}(z)+\sum_{j \neq 0} \sigma_{j} e^{-A_{j} / z^{1 / \beta_{j}}} z^{-b_{j} / \beta_{j}} \Phi^{(j)}(z), \quad \phi^{(j)}(z) \sim \sum_{i=0}^{\infty} a_{i}^{(j)} z^{i / \beta_{j}} \tag{25}
\end{equation*}
$$

where the parameters β_{j}, A_{j} and b_{j} are encoded in the large order behaviour of the a_{k} coefficients as

$$
\begin{equation*}
a_{k} \sim \sum_{j} \frac{S_{j}}{2 \pi i} \frac{\beta_{j}}{A_{j}^{\beta_{j} k+b_{j}}} \sum_{i=0}^{\infty} a_{i}^{(j)} A_{j}^{i} \Gamma\left(\beta_{j} k+b_{j}-i\right) . \tag{26}
\end{equation*}
$$

We focused only on the leading term

$$
\begin{equation*}
\left.\hat{a}_{k} \equiv a_{k}^{(m=k+2)}\right|_{k \rightarrow k-2}=-\pi^{-2 k-1} \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(k-\frac{3}{2}\right) \zeta(2 k) \tag{27}
\end{equation*}
$$

Using the following relation

$$
\begin{equation*}
2^{2 k} \Gamma\left(k+\frac{1}{2}\right) \Gamma\left(k-\frac{3}{2}\right)=\sqrt{\frac{\pi}{2}} \sum_{i=0}^{\infty} \gamma_{i} \Gamma\left(2 k-\frac{3}{2}-i\right) . \tag{28}
\end{equation*}
$$

We found

$$
\begin{equation*}
\hat{a}_{k}=-\frac{1}{4 \pi^{2}} \sum_{j=1} \frac{j^{-3 / 2}}{(2 \pi j)^{2 k-3 / 2}} \sum_{i=0} \gamma_{i} \Gamma\left(2 k-\frac{3}{2}-i\right) \tag{29}
\end{equation*}
$$

Identifying the coefficients of the transeries as
$\beta_{j}=2, \quad b_{j}=-3 / 2, \quad A_{j}=2 \pi j, \quad \frac{S_{j}}{2 \pi i} a_{0}^{(j)}=-\frac{\gamma_{0}}{j 3 / 28 \pi^{2}}, \quad a_{i>0}^{(j)}=\frac{a_{0}^{(j)}}{(2 \pi j)^{i}} \frac{\gamma_{i}}{\gamma_{0}}$ (30)
the non-perturbative corrections take the form

$$
\begin{equation*}
\Delta_{0}^{(b)} \supset \sum_{j=1} e^{-2 \pi j \mu} \mu^{3 / 2} \sum_{i=0} a_{i}^{(j)} \mu^{-i} \tag{31}
\end{equation*}
$$

in terms of the charge

$$
\begin{equation*}
\Delta_{0}^{(b)} \supset(g Q)^{5 / 4} \sum_{j=1} \exp \left(-\frac{\sqrt{\pi}}{2^{3 / 4}} j \sqrt{g Q}\right) \sum_{i=0} a_{i}^{(j)}\left(2^{7 / 4} \sqrt{\pi}\right)^{i}(g Q)^{-i / 2} \tag{32}
\end{equation*}
$$

similarly to [1] the non-perturbative corrections scales as $e^{-\sqrt{0}}$.

$O(N)$ in $d=4-\epsilon$

Now we will focus on the $O(N)$ model in $d=4-\epsilon$ with quartic interaction

$$
\begin{equation*}
S=\int d^{d} x\left(\frac{\left(\partial \phi_{i}\right)^{2}}{2}+\frac{(4 \pi)^{2} g_{0}}{4!}\left(\phi_{i} \phi_{i}\right)^{2}\right) \tag{33}
\end{equation*}
$$

This model exhibit a weakly coupled W-F fixed point

$$
\begin{equation*}
g^{*}(\epsilon)=\frac{3 \epsilon}{8+N}+O\left(\epsilon^{2}\right) \tag{34}
\end{equation*}
$$

The leading contribution Δ_{-1} read as

$$
\begin{equation*}
\frac{4 \Delta_{-1}}{g^{*} Q}=\frac{3^{\frac{2}{3}}\left(x+\sqrt{-3+x^{2}}\right)^{\frac{1}{3}}}{3^{\frac{1}{3}}+\left(x+\sqrt{-3+x^{2}}\right)^{\frac{2}{3}}}+\frac{3^{\frac{1}{3}}\left(3^{\frac{1}{3}}+\left(x+\sqrt{-3+x^{2}}\right)^{\frac{2}{3}}\right)}{\left(x+\sqrt{-3+x^{2}}\right)^{\frac{1}{3}}} \tag{35}
\end{equation*}
$$

where $x=6 g^{*} Q$ while Δ_{0} is given by

$$
\begin{equation*}
\Delta_{0}=\frac{1}{2} \sum_{\ell=0}^{\infty} n_{\ell}\left[\omega_{+}(\ell)+\omega_{-}(\ell)+(N-2) \omega_{*}(\ell)\right] \tag{36}
\end{equation*}
$$

Small and large x expansion

Using the Darboux's theorem we found that the small large

- Small x expansion:

$$
\begin{align*}
\Delta_{-1} & =f_{-1}(x)\left(1+\frac{x}{\sqrt{3}}\right)^{3 / 2}+\text { analytic } \tag{37}\\
\Delta_{0} & =f_{0}(x)\left(1+\frac{x}{\sqrt{3}}\right)^{1 / 4}+g_{0}(x, N)\left(1+\frac{x}{\sqrt{3}}\right)^{1 / 2}+\text { analytic } \tag{38}
\end{align*}
$$

- Large x expansion:

$$
\begin{equation*}
\Delta_{-1}=f_{-1}(x)\left(1+\frac{x}{\sqrt{3}}\right)^{3 / 2}+\text { analytic } \tag{39}
\end{equation*}
$$

Again, the point $x=-\sqrt{3}$ corresponds to the value of Q for which the radial mode becomes massless.

Using this we can test a claim made in $[3]^{3}$, about the relation between different orders in the semiclassical expansion. If $\Delta_{j}=\sum_{n} a_{j n}(g Q)^{n}$ the coefficients should obey

$$
\begin{equation*}
\frac{a_{j+1, n-1}}{a_{j, n}} \approx n \tag{40}
\end{equation*}
$$

Solving the previous recursive relation we find

$$
\begin{equation*}
a_{j, n}=b_{j}\left(\frac{1}{-\sqrt{3}}\right)^{n}\binom{n+j-3 / 2}{n}\left[1+O\left(\frac{1}{n}\right)\right] \tag{41}
\end{equation*}
$$

According to the Darboux's theorem all the Δ_{j} should be non-analytic around $x=-\sqrt{3}$

$$
\begin{equation*}
\Delta_{j}=f_{j}(x)\left(1+\frac{x}{\sqrt{3}}\right)^{1 / 2-j}+\text { analytic } \tag{42}
\end{equation*}
$$

Nevertheless this expression does not contains all the information of the singularity
${ }^{3}$ The Epsilon Expansion Meets Semiclassics, Rattazzi et al. 2020

Different from the $d=3-\epsilon$ case, the large x expansion of $\Delta_{0}^{(b)}$ is convergent

$$
\begin{align*}
\Delta_{0}^{(b)}(g Q) & =\sum_{\ell=0}^{\infty}(\ell+1)^{2} \sqrt{\mu^{2}+\ell(\ell+2)} \tag{43}\\
& =\left.\frac{1}{\Gamma(s)} \int_{0}^{\infty} d t t^{s-1} e^{-\mu^{2} t} \operatorname{Tr}\left(e^{\Delta_{s^{3}-\epsilon} t}\right)\right|_{s=-1 / 2} \tag{44}\\
& =\sum_{k=0} a_{k} \frac{\Gamma\left(-1 / 2+k-\frac{3-\epsilon}{2}\right)}{-2 \sqrt{\pi}} \mu^{4-\epsilon-2 k}, \tag{45}
\end{align*}
$$

where a_{k} are the coefficients of the heat kernel expansion $\operatorname{Tr}\left(e^{\Delta_{5^{3}-\epsilon} t}\right)=\sum_{k=0} a_{k} t^{k+\frac{3-\epsilon}{2}}$. Due to the Gamma function in the numerator, the terms with $k=0,1,2$ diverge in the limit $\epsilon \rightarrow 0$ and need to be renormalized.

For example, the $k=0$ term is given by

$$
\begin{equation*}
-a_{0} \frac{\Gamma(-2+\epsilon / 2)}{2 \sqrt{\pi}} \mu^{4-\epsilon}=\left[-\frac{1}{8 \epsilon}+\frac{1}{32}\left(4 \gamma_{E}-5-4 \log (2)\right)+\frac{1}{8} \log (\mu)+O(\epsilon)\right] \mu^{4} \tag{46}
\end{equation*}
$$

By renormalizing the first three coefficients, we obtain a close form for $\Delta_{0}^{(b)}$

$$
\begin{equation*}
\Delta_{0}^{(b)}=-\frac{5 \mu^{4}}{32}+\frac{\mu^{2}}{6}-\frac{1}{20}+\frac{1}{8}\left(\mu^{2}-1\right)^{2}\left(\log \left(\mu-\frac{1}{\mu}\right)+\gamma_{E}-\log (2)\right) \tag{47}
\end{equation*}
$$

It follows that $\Delta_{0}^{(b)}$ has an esential singularity at $\mu=0$ and two logarithmic branch cuts at from $\mu=-1$ to $\mu=-\infty$ and from $\mu=0$ to $\mu=1$

Monopoles Operators

Now we apply our same analysis to a different model. The action for $Q E D_{3}$ in 3 dimensions is given by

$$
\begin{equation*}
S=\int d^{3} x\left[\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}+\sum_{i=1}^{N_{f}} \bar{\psi}^{i}(\partial+i A) \psi^{i}\right] \tag{48}
\end{equation*}
$$

This theory has associated a topological current

$$
\begin{equation*}
J_{\mu}=\frac{1}{4 \pi} \epsilon_{\mu v \rho} F^{v \rho} \tag{49}
\end{equation*}
$$

For large N_{f} the theory flows to a conformal theory. Mapping the theory on the sphere we obtain

$$
\begin{equation*}
\Delta_{Q}=E_{Q}\left[A^{Q}\right] \equiv-\log Z_{S^{2} \times \mathbb{R}}\left[A^{Q}\right] \tag{50}
\end{equation*}
$$

The leading contribution read as

$$
\begin{equation*}
\Delta_{-1}=4 \sum_{\ell=Q+1}^{\infty} \ell \sqrt{\ell^{2}-Q^{2}}=Q^{3 / 2} \sum_{k=0}^{\infty} a_{k} \frac{1}{Q^{k}} \tag{51}
\end{equation*}
$$

where the coefficients a_{k} are given by

$$
\begin{equation*}
a_{k}=\frac{2}{\pi^{2} k!}(-1)^{k+1} \frac{1}{(4 \pi)^{k}} \Gamma\left(k-\frac{3}{2}\right) \Gamma\left(k+\frac{5}{2}\right) \sin \left(\frac{\pi}{4}(2 k+1)\right) \zeta\left(k+\frac{3}{2}\right) \tag{52}
\end{equation*}
$$

this series is asymptotic. The associated Borel transform read as

$$
\begin{align*}
\mathcal{B}\left[\frac{\Delta_{-1}}{Q^{3 / 2}}\right](t) & =\sum_{k=0}^{\infty} \frac{a_{k}}{k!} t^{k} \tag{53}\\
& =\sum_{m=1}^{\infty} \frac{(i-1)}{\sqrt{2} \pi m^{3 / 2}}\left[2 F_{1}\left(-\frac{3}{2}, \frac{5}{2} ; 1 ;-\frac{i t}{4 m \pi}\right)+i_{2} F_{1}\left(-\frac{3}{2}, \frac{5}{2} ; 1 ; \frac{i t}{4 m \pi}\right)\right] \tag{54}
\end{align*}
$$

Here ${ }_{2} F_{1}(a, b ; c ; x)$ denotes the Hypergeometric function, which can be analytically continued in the complex plane along any path avoiding the branch points at $x=1$ and $x=\infty$.

Therefore $\mathcal{B}\left[\frac{\Delta_{-1}}{Q^{3 / 2}}\right](t)$ features an infinite series of poles $t=4 \pi i m, m \in \mathbb{Z}$. Therefore, both lateral summation coincide. The resumed serie takes the form

$$
\begin{align*}
\Delta_{-1} & =Q^{5 / 2} \int_{0}^{\infty} d t e^{-Q t} \mathcal{B}\left[\frac{\Delta_{-1}}{Q^{3 / 2}}\right](t) \tag{55}\\
& =\sum \frac{2 i Q^{2}}{\pi m}\left[e^{x} K_{2}(x)-e^{-x} K_{2}(-x)\right], \quad x \equiv 2 i \pi m Q \tag{56}
\end{align*}
$$

where $K_{2}(x)$ is the modified Bessel function of the second kind.

Conclusions

Conclusions

Considering the semiclassical expansion

$$
\begin{equation*}
\Delta_{Q}=\frac{1}{g} \Delta_{-1}(x)+\Delta_{0}(x)+\ldots \tag{57}
\end{equation*}
$$

We conclude that:

- The singularities of Δ_{-1} and Δ_{0}, for small and large x are strickly related to the possitivity of the masses of the spectrum. Even more, their nature is exactly the same in $d=4-\epsilon$ and $d=3-\epsilon$.
- The form of the of the non-perturbative contributions does not depend of the double scaling. Their origin is merely geometric.
- The behaviour of the large x expansion for Δ_{0} is completely different in $d=3-\epsilon$ and $d=4-\epsilon$. While in the first case Δ_{0} acquires non-perturbative contributions from wordline instantons, in $d=4-\epsilon$ they do not appear, leading to an analytic expression.

Thank you!

[^0]: ${ }^{1}$ Resurgence of the large-charge expansion. Dondi, Kalogerakis, Orlando, Reffert 2001.

[^1]: ${ }^{2}$ Feynman diagrams and the large charge expansion in 3ϵ dimensions, Rattazzi et al. 2019.

