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Motivation

• (1) How much information is needed to guess the large-charge behaviour?

• What if we know the dimension of ϕn at fixed n in the ϵ expansion? Does
the analyticity in n help, if it exists?

• What if we know the dimension of ϕn in the double-scaling parameter ϵn
fixed? Here the analyticity in ϵn exists and helps for sure.

• (2) What’s the relation between the three regimes, (a) n fixed, ϵ small, (b)
double-scaling limit , and (c) ϵ fixed, n large?

• (3) Can we for example prove that the concavity in the small charge region
means the imaginary part of the operator dimension using the above?

• I will answer (1) and partially (2) today. I would like any suggestions
about (3).
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O(2) Wilson-Fisher theory

• This is already day 4 but let’s still review the large-charge expansion using
the simplest example.

• We consider the D = 3, O(2) Wilson-Fisher fixed point, and try to
compute the operator dimension of ϕQ for Q ≫ 1.

• The UV Lagrangian is given by

L = |∂ϕ|2 −m2|ϕ|2 − λ

4
|ϕ|4.

On the IR fixed-point, we tune m2 and λ = O(1).
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Key ingredient 1: State-operator correspondence

• Now that we consider a CFT, we can use the state-operator
correspondence to compute the dimension of ϕQ .

• ϕQ is the lowest operator at charge Q – This corresponds to the ground
state energy at charge Q on S2 × R, with radius 1.

• It is very important that this is a ground state of some sector of the
theory. Ideally we would want to compute ϕn for the real ϕ4 theory, but we
don’t know how this is defined.

• We don’t even know how to do ϕnϕ̄m. They all seem to have an unstable
periodic orbit in phase space though. Periodic orbit theory and quantum
scarring?
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Grand canonical ensemble

• Anyway, in order to compute the ground state energy at charge Q, we can
use the grand-canonical ensemble,

Z [β, µ] = TrH
S2

[
e−β(H−µQ)

]
⟨Q⟩ = 1

β

∂

∂µ
logZ , ⟨E⟩ = − ∂

∂β
logZ + µ⟨Q⟩

• In the low temp limit (β → ∞), we have

F ≡ − 1
β
logZ ≈ − ∂

∂β
logZ = ⟨E⟩ − µ⟨Q⟩

• So we just need to evaluate the grand-canonical free energy and then do
the Legendre transform.
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Key ingredient 2: Saddle point analysis

• We will represent the grand partition function using the path integral, and
then use the saddle-point approximation.

• According to the path-integral formulation,

Z(β, µ) ≡ Tr
[
e−β(H−µQ̂)

]
=

∫
Dϕ e−(S[ϕ]−µQ)

• Since ρ ≡ i(ϕ̄∂0ϕ− ϕ∂0ϕ̄), if we redefine Φ ≡ e−iµtϕ, the Lagrangian
becomes

L− µQ = |∂Φ|2 + (m2 − µ2)|Φ|2 + g |Φ|4

• The relevant saddle point is the vacuum configuration. Quite simply,
Φ = (const.), or ϕ = Ae iµt .

• Did you notice that I skipped the logic a little? If not, fine. If yes, it’s not
too relevant so let’s go on.
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Summary so far

• All the complications aside, what we have to do is clear now.

• Find the lowest saddle point configuration of the original Lagrangian

L = |∂ϕ|2 −m2|ϕ|2 − λ

4
|ϕ|4,

which has the dependence ϕ = Ae iµt , on S2 × R.

• Compute the energy of the configuration, E(µ), in terms of chemical
potential, µ, and perform the Legendre transform to get E(Q) in terms of
charge.

• At large Q, the action evaluated at the saddle point becomes large. The
saddle-point analysis is therefore controlled.
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Plot Twist: Use of effective action

• We can go on and actually compute the classical action and the 1-loop
corrections and so on, if it were a weakly-coupled theory.

• In fact, one could do this in the ϵ-expansion, where λ = O(ϵ). We will get
back to this later on.

• However, in the absence of such a weak-coupling parameter, we can just
use the effective field theory around the saddle-point!

• This is basically the idea of the large charge expansion.
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The large charge EFT

• You know what to do. We just need to write down the action invariant
under conformal and the O(2) symmetry.

• This can be done by integrating out the massive radial mode a and writing
down the conformal sigma model.

• At leading order the mass of a is |∂χ|, so it can come in the denominator.

• At leading order in µ (χ = µt), the effective Lagrangian becomes

L = c3/2|∂χ|3
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The large-charge EFT

• The whole effective action is the following,

L = c3/2|∂χ|3 + c1/2Ric3|∂χ|+ O(Q−1/2)

• The ground state energy, realised at χ = µt, is the dimension of the
operator ϕQ .

• The first term is O(µ3), and from Noether theorem we have µ = O(
√
Q),

so it’s O(Q3/2).

• The second is Q1/2. It’s only scale-invariant but not Weyl-invariant, but
one can complete it. The completion is O(Q−1) though.

• No terms is available at order O(1). This is important later. Have you
ever followed the proof of this? If not I can do it on the board.

9



Aside: Difference between this EFT and that EFT

• We have been treating the O(2) model and wrote the EFT for the original
action at large charge, using the field χ.

• People have considered writing down the EFT at large chemical potential
for the action with chemical potential term added.

• This is less advantageous, having less symmetries.

• In particular, the conformal (in particular the Lorentz) symmetry is
explicitly broken, so the EFT is

L = (∂0χfluc)
2 + c2

s (∂iχfluc)
2 + ◦ ◦ ◦

Underlying conformal invariance Tµ
µ = 0 dictates c2

s = 1/2.

• Using our EFT, this can be easily derived by setting χ = µt + χfluc.

• This becomes more important when we realise the inhomogeneous ground
states, but not for today.
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The ground state energy

• Now we have the operator dimension of ϕQ from th effective action,

L = c3/2|∂χ|3 + c1/2Ric3|∂χ|+ O(Q−1/2)

• Up to O(Q0) term, the result is

∆[Q] = c̃3/2Q
3/2 + c̃1/2Ric3Q

1/2 − 0.094 + O(Q−1/2).

• The 1-loop correction is O(1). Since there are no effective operator there,
the prediction gives a precise prediction as a number, not as an
undetermined coefficient in the EFT.

• It would be important to check this from other perturbative methods.
Done at large-N by de la Fuente.
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Aside: Numerical stability of the fit

• Anton computed the operator dimension of monopole operators at large-N
and fitted numerically.

• He really fitted with

∆[Q] = c̃3/2Q
3/2 + c̃1/2Ric3Q

1/2 + c0 + O(Q−1/2).

• We could also fit with

Q2∆(Q)−
(
Q2

2
+

Q

4
+

3
16

)
∆(Q − 1)−

(
Q2

2
− Q

4
+

3
16

)
∆(Q + 1)

=
3
8
c0 + O(Q−1/2).
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Remark: Weak-coupling expansion

• This result is weird though. Why is the operator dimension of ϕQ not
proportional to Q? Using Feynman diagrams don’t we get
∆[Q] = Q + ◦ ◦ ◦ ?

• At D = 4, the Wilson-Fisher fixed point is a free theory. If we do the same
analysis in D = 4, we get ∆[Q] ∝ Q4/3 and not ∆[Q] = Q.

• In general, we get ∆[Q] ∝ QD/(D−1) for general D as this only comes from
the dimensional analysis.

• (This use of EFT is nothing but a sophisticated version of the dimensional
analysis in the first place.)
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Weak-coupling expansion

• Of course as you all know this is not weird at all.

• Imagine computing this using Feynman diagrams. Let’s say we have the
weak-coupling parameter g . g is the strength of two-body interaction.

• There are Q particles here, and the O(g k−1) correction to ∆[Q] = Q

comes from k body interactions between them.

• The way to pair k particles up inside a total of Q particles is
(
Q
k

)
∼ Qk .

So in total the correction will go as O(g k−1Qk).

• This means that the actual expansion parameter is O(gQ). Feynman
diagram computation can only capture the regime gQ ≪ 1, while our EFT
captured the regime gQ ≫ 1.

• Indeed, the Feynman diagram computation shows

∆[Q] = Q

[(
D

2
− 1

)
+

ϵ

10
(Q − 1) + O

(
(ϵQ)2

)
+ O

(
(ϵQ)3

)
+ ◦ ◦ ◦

]
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Weak-coupling expansion

• The idea of combining large charge with the ϵ-expannsion is that We can
explicitly compute and show this if we go back to our grand canonical
ensemble.

• We were expanding our original action around the saddle ϕ = Ae iµt . We
had no weak coupling parameter, so we had no way of knowing what A

was.

• However, if we have the weak coupling parameter, ϵ, we can compute A

and compute the energy of the configuration.
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Weak-coupling expansion

• Let us quickly look for the lowest configuration ϕ = Ae iµt in the
ϵ-expansion.

• The Lagrangian was

L = |∂ϕ|2 −m2|ϕ|2 − λ

4
|ϕ|4

and

λ/(4π)2 = ϵ/5 + O(ϵ2) m = 1 − ϵ/2

m is the conformal coupling on SD−1 × R.

• We use the EOM and the charge fixing constraint to determine A and µ in
terms of Q,

∂2ϕ = m2ϕ+
λ

2
|ϕ|2ϕ, Q = i(ϕ∂0ϕ̄− ϕ̄∂0ϕ)

2πD/2

Γ(D/2)

• We can solve for A and µ by solving a cubic equation, so there is an
analytic solution.
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Aside: ϵ-expansion on the torus

• You all know how to proceed from now on, so let’s skip the derivation.

• Let me comment one thing though. The crossover of the solution at
Q ∼ 1/ϵ is due to the competition between conformal coupling and the
interaction in

L = |∂ϕ|2 −m2|ϕ|2 − λ

4
|ϕ|4

• (Equivalently, this means that the double-scaling limit is taken so that the
mass of the dilaton is fixed.)

• On the torus, m = 0 from the beginning and one would have never found
out the crossover. But this would be enough to fix the leading order
coefficient in the EFT. This number is the same on the sphere or on the
torus.

• In that case c3/2 and c1/2 are related as there is only one free parameter in
the EFT, and this might also help. (Also the computation of the universal
term...? But we start from 4D so how should I regularise...?)
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Final result of the Weak-coupling expansion

• The final result in the free limit (ϵQ ≪ 1) is

∆ = Q

[(
D

2
− 1

)
+

ϵ

10
(Q − 1)− ϵ2

50

(
Q2 − 4Q + O(1)

)
+ ◦ ◦ ◦

]
and the result in the interacting limit (ϵQ ≪ 1) is

∆ =

(
15
8ϵ

+ α+ O(ϵ)

)(
2ϵQ
5

) 4−ϵ
3−ϵ

+

(
5
4ϵ

+ β + O(ϵ)

)(
2ϵQ
5

) 2−ϵ
3−ϵ

+ ◦ ◦ ◦

• We recover the EFT result when ϵQ ≫ 1.
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Comment on the general structure

• The general structure can be packaged into a double scaling limit with
x ≡ ϵQ fixed,

∆ =
1
ϵ
F0(x) + F1(x) + ϵF2(x) + ◦ ◦ ◦

• Even though it was at weak coupling, by taking the number of particles,
Q, large, we were able to probe the strongly coupled region. This is similar
to the ordinary ’t Hooft limit.

• This type of phenomena is ubiquitous. For example, it is also similar to
the Horowitz-Polchinski solution of self gravitating strings. Even when the
string coupling is small, having a large number of fundamental strings
changes the physics qualitatively.
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What does this mean?

• This means that we can sort of guess the strong-coupling result given
weak-coupling, in the double-scaling limit.

• We could analytically continue ∆0 at small ϵn to a larger ϵn. Then we
would recover the EFT result, in principle.

• At small ϵn, the result presumably recover the Feynman diagram
computation at small ϵ and fixed n, so these two regions are also
connected.

• Given the resummation of ϵQ4/3log(ϵQ), we could say that this is also
connected smoothly to large Q, fixed ϵ region. We would really need to
include the worldline instanton corrections though.

• Are you all happy now?
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Remaining question

• I’m not still happy. We know (but I will expalin again later) that the
operator dimension becomes complex at large ϵQ, of the O(2) WF theory
in D = 4 + ϵ.

• And we say that it’s real for small ϵQ.

• This is not against the analyticity in term of ϵQ. There simply is a branch
cut in the ϵn plane.

• (This is still weird as there seems to be a phase transition in a finite
volume system.)

• If this is really connected to finite Q, then the result remains real.

• But it’s against the actual computation. No wonder, the potential is
unbounded so there must be an imaginary part, albeit nonperturbatively
small.
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Non-unitary CFT above four dimensions

• Let us now talk about the Wilson-Fisher theory in 4 + ϵ dimensions.

• Let us remember the result in D = 4 − ϵ, in the free limit (ϵQ ≪ 1).

• The final perturtive result in this limit

∆ = Q

[(
D

2
− 1

)
+

ϵ

10
(Q − 1)− ϵ2

50

(
Q2 − 4Q + O(1)

)
+ ◦ ◦ ◦

]
presumably matches the Feynman diagram computation to all orders.
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Nonpertubative corrections – Free limit

• To get the result of the O(2) model in 4+ ϵ dimensions, we simply replace
ϵ with −ϵ, so we have

∆ = Q

[(
D

2
− 1

)
− ϵ

10
(Q − 1)− ϵ2

50

(
Q2 − 4Q + O(1)

)
+ ◦ ◦ ◦

]
.

This matches Feynman diagram computation, but this is not the end of
the story.

• Since the model is a complex CFT, the operator dimension gets corrected
and obtain nonperturbative imaginary parts from instanton corrections to
the sphere partition function (See Giombi et al).

• Indeed, the operator dimension of ϕ gets an imaginary part of O(e−1/ϵ),
so the result above is not enough.

• The imaginary part is very intuitive, since the potential of the model is the
inverse ϕ4 potential, and experiences the tunnelling.
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Aside – Interacting limit

• In the interacting limit ϵQ ≫ 1, the imaginary part is no longer
nonperturbative. Replace ϵ with −ϵ in the final expression, and we get

∆ = −15
8ϵ

(
−2ϵQ

5

) 4+ϵ
3+ϵ

+ ◦ ◦ ◦ = −e±
2πi
3

(
2ϵQ
5

) 4+ϵ
3+ϵ

• The transition is because the saddle point solution cannot have a real
solution anymore when ϵQ > O(1).

A2 =
2(µ2 −m2)

λ
, Q = 2A2µ

2πD/2

Γ(D/2)

λ < 0 here.

24



Nonpertubative corrections – Free limit

• As I said, there is a computation in the ϵ-expansion and the large-N
expansion that there is indeed an imaginary part to the operator
dimension. This comes from the instanton contribution from the sphere
partition function.

• In our large charge formalism, it is more intuitive where such a
nonperturbative correction comes from.

• In order to see this, let’s go back to the original formalism using the
grandcanonical partition function. It was

Z(β, θ) ≡ Tr
[
e−βH−µQ̂

]
=

∫
Dϕ e−(S[ϕ]+µQ)

• We first separate the fields into two parts, ϕ = r√
2
e iχ.
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Nonpertubative corrections – Free limit

• We were talking about the grandcanonical partition function

Z(β, θ) ≡ Tr
[
e−βH−µQ̂

]
=

∫
Dϕ e−(S[ϕ]+µQ)

• We are looking for the saddle of this path-integral. That is, the solution to
the classical EOM. We take the low-temp limit, so only the lowest one
matters. in particular, this is homogeneous in space.

• We separated the fields into two parts, ϕ = r√
2
e iχ.
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Nonpertubative corrections – Free limit

• The EOM is

∂2ϕ = m2 + 2λ|ϕ|2ϕ

This reduces to

r̈ = r χ̇2 −m2r − λr 3 r 2χ̇ = Q/α(D)

• One can eliminate χ and we get

r̈ = −V ′(r), V (r) =
ρ2

2r 2 +
m2

2
r 2 − λ

4
r 4,

where λ/(4π2) = ϵ/5 > 0 (as I changed the definition of λ by a minus
sign).

• The lowest configuration of this QM system gives the log of the grand
canonical partition function.
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Nonpertubative corrections – Free limit

• In the Euclidean signature, we have the inverted potential and the EOM is

r̈ = V ′(r), V (r) =
ρ2

2r 2 +
m2

2
r 2 − λ

4
r 4

actually, we can rescale r ≡ R/
√

|λ| and have

V (r) =
1
|λ|

[
(λρ)2

2R2 +
m2

2
R2 − λ

4
R4

]

• From here on γ ≡ λρ.

• (Memo: Write on the board how the potential looks like.)

• What we have been doing so far is to look for time independent solutions.
Indeed a real local minima of V (r) exists when x ≡ λQ < O(1). On the
other side, there is not real saddle, meaning the operator dimension is
really complex at the saddle point.

• But even when λQ < O(1), there exists a bounce solution, which is time
dependent.
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Nonpertubative corrections – Free limit

• It is now easy to compute the action of the bounce from the potential

V (r) =
1
|λ|

[
(λρ)2

2R2 +
m2

2
R2 − λ

4
R4

]
≡ 1

|λ|W (R)

• The action of the bounce is given by

Sb ≡ 2α(D)

∫ r1

r0

dr
√

2(V (r)− V (r0)) =
2
√

2α(D)

λ
sb(λρ)

where

sb(γ) ≡
∫ R1

R0

dR
√

(W (R)−W (R0))
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Nonpertubative corrections – Free limit

• The computation can be in principle done analytically but let’s do it
numerically.

• We know that

sb(0) =
√

2
3

so we define sb(γ) =
√

2
3 F (γ).

• Finally, we get

Sb =
N + 8

3ϵ
F (ϵQ)

by plugging in the fixed point coupling.
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Nonpertubative corrections – Free limit

• The final result for the imaginary part should then look like

±ifb(ϵQ)

√
2(N + 8)

πϵ
exp

(
−N + 8

3ϵ
F (ϵQ)

)
+ · · ·

• N as in O(N) model, I’m shoing it as the logic is the same. Also i comes
from the unstable direction around the saddle. This numerically looks like
this.

0.0 0.1 0.2 0.3 0.4
0.0

0.1

0.2

0.3

0.4

0.5

Figure 1: Plot for F (ϵQ)
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Two interesting points

• We had

Im∆(Q) = ±fb(ϵQ)

√
2(N + 8)

πϵ
exp

(
−N + 8

3ϵ
F (ϵQ)

)
+ · · ·

• First of all, at ϵQ = 0, the non-perturbative correction is of order
O(exp

(
−N+8

3ϵ

)
).

• This matches the non-perturbative correction computed using the ordinary
ϵ-expansion, for the dimension of ϕ. This checks the consistency of our
result.

• The regime ϵQ fixed is smoothly connected to ϵ small and Q fixed.
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Two interesting points

• We had

Im∆(Q) = ±fb(ϵQ)

√
2(N + 8)

πϵ
exp

(
−N + 8

3ϵ
F (ϵQ)

)
+ · · ·

• Second, the point ϵQ = x0 at which F (x) = 0 is also interesting.

• The action of the bounce becomes zero and the dilute-gas approximation
is not valid there anymore.

• This is usually associated with some form of large-N [or Q] phase
transitions (e.g., GWW transition).
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Two interesting points

• Indeed, the “planar” limit of ∆(Q), which is F0(ϵQ)/ϵ experiences the
phase transition at ϵQ = x0.

• This is presumably smoothed out by the growing instanton corrections
near ϵQ = x0. In particular, the imaginary part should smoothly connect
to the very large imaginary part at large ϵQ.

• After some computation, we can also see that

∆(Q) = ±fb(ϵQ)

√
2(N + 8)

πϵ
exp

(
−N + 8

3ϵ
F (ϵQ)

)
+ · · ·

F (ϵQ) ≈ (ϵQ − x0)
5/4/ϵ

• One would be able to take a double-scaling limit which fixes
(ϵQ − x0)

5/4/ϵ to probe the region in more detail.

• These are just abstract comments but kind of hints towards a connection
to matrix models. (Also remember the RMT paper by Komargodski et al.)
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Final result with bounce corrections – Free limit

• The final result for the operator dimension in the free limit is

Q

[(
D

2
− 1

)
− ϵ

10
(Q − 1)− ϵ2

50

(
Q2 − 4Q + O(1)

)
+ ◦ ◦ ◦

]
±i fb(ϵQ)

√
2(N + 8)

πϵ
exp

(
−N + 8

3ϵ
F (ϵQ)

)
.

• As we aproach ϵQ = x0, the non perturbative imaginary correction gets
bigger and bigger.

• This connects nicely to the formula for ϵQ ≫ 1,

∆ = −e±
2πi
3

(
2ϵQ
5

) 4−ϵ
3−ϵ

+ ◦ ◦ ◦

The nonperturbative imaginary part comes from the proliferation of the
instanton!

• This concludes what I wanted to say today.
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If we have time

• (1) About the SUSY cubic model.

• (2) Mystery of the exponent Q(4+ϵ)/(3+ϵ)
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Future directions

• Resurgence structure of the double-scaling limit? How does this relate to
the expansion with fixed ϵ and large Q, or fixed Q and small ϵ?

• Similar structure of double expansion in twisted superpotential of N = 2
gauge theory. In this language, ϵQ ≫ 1 is the electric description and
ϵQ ≪ 1 is the dyonic description. SW curve for this non-SUSY system!?

• What can we say about D = 4 − ϵ case? We expect no real bounce, but
does this mean we have no non-perturbative corrections to the
ϵ-expansion?

• We might have complex bounces. Would this contribute as a small
nonperturbative correction to the ϵ-expansion?

• Any connection to matrix models, minimal strings, or 2D gravity?
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