CERN's Radioactive Ion Beam Facility

© CERN

ISOLDE at CERN

Isotope Separator OnLine Device

A small facility with a big impact!

- ~0.1% of the CERN budget
- ~7% of the CERN scientists
- ~50% of the CERN protons

Run by international collaboration

- CERN, BE, DE, DK, FI, FR, GR, IT, NO, PL, RO, SK, ZA, ES, SE, UK
- ~50 staff/students/fellows
- 🔶 ~1500 users

'' Number of neutrons, N

199192

Production: Modern-day alchemy

- The protons split up the heavy nucleus to produce a wide variety of nuclei simultaneously!
- Requirements for experiment:
 - High production
 - Pure radioactive beams: 1 kind of isotope
- Different stages of preparation
 - Production
 - Ionization
 - Separation

Gold is one of the chemical elements produced at ISOLDE, both stable as well as radioactive isotopes!

Ionization: RILIS

- Resonance Ionization Laser Ion Source
- Uses lasers to selectively ionize a particular element (isotope/isomer)

What is produced at ISOLDE?

Research with radioactive beams

Research with radioactive beams

- How much do nuclei weigh? How big are they? What shape do they have?
- How and where in the universe are chemical elements produced?
- Why can protons and neutrons be bound together in many 1000 combinations? What are the limits of nuclear existence?
- How can we use the unique properties of radioactive nuclei for diagnosing and treating cancer?
- What's the location of impurities in crystals and biological samples?

The ISOLDE facility

Protons (1.4 GeV)
Low energy RIBs (up to 60 keV)
High energy RIBs (up to 10 MeV/u)

CRIS

CRIS

How do you measure flour for a cake?

How do you weigh an astronaut in space?

 $\sum F = ma$

If gravity is not the force to use anymore, then you can use tension!

How do you weigh an atom?

$$\sum F = ma$$

If gravity and tension won't work, then you must search for something else!

$$E=\frac{1}{2}mv^2$$

Daily life at ISOLDE

- 1. Propose experiment for board of experts
- 2. Experiment gets scheduled
 - Winter: shutdown
 - April November: beam times
 - \rightarrow ~8 months/year, 24/7
- 3. Prepare setup
- 4. Do experiment
 - ~1 week continuously
- 5. Analysis, discussion, publication, conferences

MEDICIS: recycling protons for society

 Production of nonconventional radioisotopes for medical research

leoitis

- 80-90% of the proton beam goes through the ISOLDE target unaffected
- Use these (free!) protons to create more radioisotopes

ISOLDE Decay Station IDS

DTL

The polarity of the electrode is then switched while the ion is inside.

It would like falling into a lift, and when you reach the bottom of the lift, the lift has brought you back to the top so that you may fall again further!

31

Nuclear reactions

Merci! Bedankt! Thank you!

https://isolde.cern

https://medicis.cern

And some behind the scenes!