


CI/CD for PLC-based Control Systems
Improving quality assurance, traceability and developer workflows

Brad Schofield, Joao Borrego

October 15, 2021 CI/CD for PLC-based Control Systems 2



Introduction and Motivation
What is CI/CD?

Continuous Integration/Continuous Deployment is a development
methodology emphasising frequent, small commits to version control,
supported by automated build and test steps

October 15, 2021 CI/CD for PLC-based Control Systems 3



Introduction and Motivation

Why is CI/CD useful?

• Simplifies the work of the developer; only need to concentrate on
code changes; build and test are taken care of

• Facilitates cooperation; several developers can work in parallel

• Improves traceability, from bug report/feature request to deployed
product

October 15, 2021 CI/CD for PLC-based Control Systems 4



Introduction and Motivation

Why is CI/CD difficult to use for PLC development?

• Automation of the build and deployment phases is not trivial

• Implementation of automatic testing is not straightforward

Enabling CI/CD for PLC development

• Creation of tools to automate the build and deploy stages

• Creation of test interfaces which allow suites of fully automated
functional tests to be run against physical (or simulated) PLCs

October 15, 2021 CI/CD for PLC-based Control Systems 5



Automated Build Tools
Wrapping API in gRPC Service

• Common approach for all PLC vendors: wrap API (Simatic, TIA or
Unity) with a high-level gRPC service

S7 gRPC Service Client (Python)Server (C#)

S7Lib Build/Deploy Script

Siemens Simatic API

S7 Server VM CI/CD Runner

October 15, 2021 CI/CD for PLC-based Control Systems 6



Use Case: LHC Powering Interlocks

Description

Interlock system for
superconducting magnets of the
LHC. 36 PLCs, sharing common
code but each configured
differently.

AR1
LR1 XR1 XL1 LL1 AL1

AR8

AR7

AL7

AR6

MR6

ML6

AL6

AR5

MR8

XR8

XL8

ML8

AL8

LR5
XR5

XL5
LL5AL5

AR4
MR4

ML4
AL4

AR3

AL3

AR2

MR2

XR2

XL2

ML2
AL2

Point 4
CMS

Point 5

Point 6

LHCb
Point 8

ATLAS
Point 1

ALICE
Point 2

Point 7

Point 3

Details

• Siemens S7-319 PLCs each
with different HW config

• Common source code (SCL,
IL) versioned in git

• Specific config handled by
code unique to each

• Lab setup with single PLC
available for testing

• Want to ensure that code
tested in lab is correctly
deployed to all production
projects

October 15, 2021 CI/CD for PLC-based Control Systems 7



Demo Part I: Build Automation

October 15, 2021 CI/CD for PLC-based Control Systems 8



Automated Testing Tools
Approach

• Use OPC UA used to
interface PLC with tests

• Use IO simulators used to
‘mock’ field input

• Siemens Simulation

Unit provides C API;
wrapped in Python package
for ease of use

• Use pytest to implement
the tests. Fixtures manage
connections to PLC and IO
simulator

def test_quench_abort_status_rb(plc_client,

simba):↪→
"""Main Dipole Quench Status test"""

plc = plc_client.get_root()

status_abort =

plc.get_child("7:A_A_1_ST_ABORT")↪→
quench_status =

plc.get_child(['7:1_Instance1_Circuit1',

'7:Quench_Status'])

↪→
↪→

simba.write_io_bin('S000I4.1', 1)

wait()

assert status_abort.get_value() is True

assert quench_status.get_value() is

False↪→

October 15, 2021 CI/CD for PLC-based Control Systems 9



Demo Part II: Test Automation

October 15, 2021 CI/CD for PLC-based Control Systems 10



home.cern

http://home.cern

	Introduction and Motivation
	Demo Part I: Build Automation
	Demo Part II: Test Automation

