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Introduction and Motivation
What is CI/CD?

Continuous Integration/Continuous Deployment is a development
methodology emphasising frequent, small commits to version control,
supported by automated build and test steps
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Introduction and Motivation

Why is CI/CD useful?

• Simplifies the work of the developer; only need to concentrate on
code changes; build and test are taken care of

• Facilitates cooperation; several developers can work in parallel

• Improves traceability, from bug report/feature request to deployed
product
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Introduction and Motivation

Why is CI/CD difficult to use for PLC development?

• Automation of the build and deployment phases is not trivial

• Implementation of automatic testing is not straightforward

Enabling CI/CD for PLC development

• Creation of tools to automate the build and deploy stages

• Creation of test interfaces which allow suites of fully automated
functional tests to be run against physical (or simulated) PLCs
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Automated Build Tools
Wrapping API in gRPC Service

• Common approach for all PLC vendors: wrap API (Simatic, TIA or
Unity) with a high-level gRPC service

S7 gRPC Service Client (Python)Server (C#)

S7Lib Build/Deploy Script

Siemens Simatic API

S7 Server VM CI/CD Runner
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Use Case: LHC Powering Interlocks

Description

Interlock system for
superconducting magnets of the
LHC. 36 PLCs, sharing common
code but each configured
differently.
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Details

• Siemens S7-319 PLCs each
with different HW config

• Common source code (SCL,
IL) versioned in git

• Specific config handled by
code unique to each

• Lab setup with single PLC
available for testing

• Want to ensure that code
tested in lab is correctly
deployed to all production
projects
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Demo Part I: Build Automation
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Automated Testing Tools
Approach

• Use OPC UA used to
interface PLC with tests

• Use IO simulators used to
‘mock’ field input

• Siemens Simulation

Unit provides C API;
wrapped in Python package
for ease of use

• Use pytest to implement
the tests. Fixtures manage
connections to PLC and IO
simulator

def test_quench_abort_status_rb(plc_client,

simba):↪→
"""Main Dipole Quench Status test"""

plc = plc_client.get_root()

status_abort =

plc.get_child("7:A_A_1_ST_ABORT")↪→
quench_status =

plc.get_child(['7:1_Instance1_Circuit1',

'7:Quench_Status'])

↪→
↪→

simba.write_io_bin('S000I4.1', 1)

wait()

assert status_abort.get_value() is True

assert quench_status.get_value() is

False↪→
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Demo Part II: Test Automation
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