
Applying Model Checking to PLC programs
(PLCverif)

Borja Fernández Adiego

Context

PLC program

…

Output1

(valve a)

Output2

(valve b)

Input1

Input3

Input2

Input4

Functional Requirement (Safety)
“When Output1 is true, Output2 should never be false”

If Output1 is TRUE
then Output2 is TRUE

 If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 24 = 16 combinations

 If they are INT (16-bit), then 216*4 ≈ 1.8*1019 combinations

for large systems (many variables), such requirements cannot (practically) be checked by using testing techniques

Our goal is to be sure that the PLC program is compliant with the specifications (requirements)

Formal methods, formal verification and model checking

Formal methods are techniques based on mathematics and formal logic (e.g. Petri Nets, Temporal Logic, Automata, etc.)

Formal verification

Verification Formal

methods
Formal

verification

Model

checking

Testing

Theorem

proving

Static

analysis

Simulation

Automata

Petri Nets

Temporal

Logic

B Method

…

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)

4

Formal

model

Formal

requirement

Model Checker


Property OK


Property failed

Trace leading to the violation

Real System

(hardware, software)

Specifications

Introduction to model checking

PLCverif

Temporal LogicAutomata, Timed
automata, Petri nets,

etc.

If Output1 is TRUE
then Output2 is TRUE

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

5

Formal methods and the functional safety standards

IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

 several references to model checking. For example from IEC 61511-2:2016 Annex B:

“… specification should be implemented in the graphical language of the model checking workbench
environment...”

PLCverif Demo

more details: http://cern.ch/plcverif

source code: https://gitlab.com/plcverif-oss

http://cern.ch/plcverif
https://gitlab.com/plcverif-oss

Conclusions

Pros Cons

Checks exhaustively all
combinations

We have to create the model
of the system

We have to use temporal logic
(requirements)

State space explosion

• Modelling: find the appropriate formalism and the right level of abstraction

• Requirements formalization (e.g. temporal logic): hard to use

• State space explosion: there is a limitation on the number of combinations to check

Partially hidden by PLCverif

