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Functional Requirement (Safety)
“When Output1 is true, Output2 should never be false”

If Output1 is TRUE 
then Output2 is TRUE 

 If “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check  24 = 16 combinations

 If they are INT (16-bit), then 216*4 ≈ 1.8*1019 combinations

for large systems (many variables), such requirements cannot (practically) be checked by using testing techniques

Our goal is to be sure that the PLC program is compliant with the specifications (requirements)



Formal methods, formal verification and model checking

Formal methods are techniques based on mathematics and formal logic (e.g. Petri Nets, Temporal Logic, Automata, etc.)
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Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)
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If Output1 is TRUE 
then Output2 is TRUE 



IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems
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Formal methods and the functional safety standards

IEC 61511: Functional safety – Safety instrumented systems for the process industry sector

 several references to model checking. For example from IEC 61511-2:2016 Annex B:

“… specification should be implemented in the graphical language of the model checking workbench 
environment...”



PLCverif Demo

more details: http://cern.ch/plcverif

source code: https://gitlab.com/plcverif-oss

http://cern.ch/plcverif
https://gitlab.com/plcverif-oss


Conclusions

Pros Cons

Checks exhaustively all 
combinations

We have to create the model
of the system

We have to use temporal logic
(requirements)

State space explosion

• Modelling: find the appropriate formalism and the right level of abstraction

• Requirements formalization (e.g. temporal logic): hard to use

• State space explosion: there is a limitation on the number of combinations to check

Partially hidden by PLCverif


