ICALEPCS 2021

Applying Model Checking to PLC programs
(PLCverif)

Borja Fernandez Adiego

Context

Our goal is to be sure that the PLC program is compliant with the specifications (requirements)

Inputl —— Functional Requirement (Safety)
Input2 — - ggfsgt;) “When Outputl is true, Output2 should never be false”
Input3 —— PLC program If Outputl is TRUE
Inputd —— — Output2 then Output2 is TRUE
(valve b)

= |f “Input1”, “Input2”, “Input3” and “Input4” are BOOL, then we need to check 2* =16 combinations

= |f they are INT (16-bit), then 216" = 1.8*10° combinations

for large systems (many variables), such requirements cannot (practically) be checked by using testing techniques

Formal methods, formal verification and model checking

Formal methods are techniques based on mathematics and formal logic (e.g. Petri Nets, Temporal Logic, Automata, etc.)

Formal verification

Formal

Verification
methods

Formal
verification

checking Petri Nets

Temporal

Static Logic
analysis B Method
Theorem

proving

Simulation v

Introduction to model checking

Given a global model of the system and a formal property, the model checking algorithm
checks exhaustively that the model meets the property

Clarke and Emerson (1982) and Queille and Sifakis (1982)
PLCverif

FUNCTION_BLOCK FB100
VAR_INPUT

a : BOOL; Specifications

END_VAR
VAR_TEMP

Formal If Output1 isTTRYE Formal
| requirement

T tem then Output2
model R >ftware) P
BEGIN
b := NOT a;
END_FJ&&;}S;_BLUCK

> <€

Automata, Timed Temporal Logic
automata, Petri nets, Model Checker

X v

Property failed
Trace leading to the violation

Property OK

Formal methods and the functional safety standards

IEC 61508: Functional safety of electrical/electronic/programmable electronic safety-related systems

Table A.1 — Software safety requirements specification

Table A.5 — Software design and development —

software module testing and integration

(See 7.4.7 and 7.4.8)

(See 7.2)
Technique/Measure * Ref. SIL 1 SIL 2 SIL 3 SIL 4
1a | Semi-formal methods Table B.7 R R HR HR
I ik | Formal methods B.22 C24 —- R R HR
2 Forward traceability between the system safety C211 R R HR HR
requirements and the software safety requirements
3 Backward traceability between the safety C211 R R HR HR
requirements and the perceived safety needs
4 Computer-aided specification tools to support B.2.4 R R HR HR

appropriate technigues/measures above

Technique/Measure * Ref. SIL1|SIL2|SIL3| SIL4
1 Probabilistic testing C.51 --- R R R
2 Dynamic analysis and testing B.6.5 R HR HR HR
Table B.2
3 Data recording and analysis C.52 HR HR HR HR
4 Functional and black box testing B.5.1 HR HR HR HR
B.5.2
Table B.3
5 Performance testing Table B.6 R HR HR
6 Model based testing C.5.27 R HR HR
7 Interface testing C.53 R HR HR
8 Test management and automation tools c.4.7 R HR HR HR
9 Forward traceability between the software design specification c.2.11 R R HR HR
and the module and integration test specifications
10 Formal verification C.5.12 R R

IEC 61511: Functional safety — Safety instrumented systems for the process industry sector

= several references to model checking. For example from IEC 61511-2:2016 Annex B:

“... specification should be implemented in the graphical language of the

environment...”

model checking workbench

PLCverif Demo

more details: http://cern.ch/plcverif

source code: https://gitlab.com/plcverif-oss

http://cern.ch/plcverif
https://gitlab.com/plcverif-oss

Conclusions

Partially hidden by PLCverif

Checks exhaustively all
combinations

* Modelling: find the appropriate formalism and the right level of abstraction
* Requirements formalization (e.g. temporal logic): hard to use

* State space explosion: there is a limitation on the number of combinations to check

