# 3<sup>rd</sup> PLC Based Control Systems WORKSHOP



### **ICALEPCS 21 Conference**

E. Blanco Viñuela, Brad Schofield J. Ortolá Vidal, B. Fernandez Adiego



Jeronimo ORTOLA VIDAL

Automation Engineer CERN Genève, Geneva

Delegates



#### Brad Schofield

Software Engineer CERN Geneva, Geneva, Switzerland

Poster Presenters

Poster Prese



#### Borja Fernández Adiego

Automation and functional safety engineer CERN

Poster Presenters

Poster Presen



#### Enrique Blanco Vinuela

Control Engineering section head (Industrial Control Systems Group) CERN

Poster Presenters

Geneva

Poster Preser

## Organisation

#### Goals

- To create a **COLLABORATIVE space** where attendees exchange:
  - return of experience
  - best practices
  - methods and tools employedwhen engineering PLC based control systems.
- Identifying expertise among institutes which can foster collaborations
- Participation is the key!

#### Basics

- It is not a tutorial
  - But all questions are welcome
- Virtual: a new format
- Feedback: questions & answers
  - Zoom
    - Advised to raise your hand "virtually" to intervene (the convener will moderate)
    - Chat: Write your question or comment (the convener will gather them)
  - Do not use Whova for your questions
- Participation
  - Keep your microphones off while you're not talking
  - Keep your cameras on (better to see people than avatars!)



#### Feedback of the previous editions

- Overall excellent feedback from participants
  - Identified partners and collaboration in some projects
  - Improved the overall knowledge of the field (e.g. testing, versioning, specs...)

| Place                 | Attendees |
|-----------------------|-----------|
| Barcelona 17          | 45        |
| New York 19           | 34        |
| Shanghai 21 (virtual) | 57        |

#### **Attendees**

57 attendees from 28 Institutes(4 from the organization)





### Main workshop topics

Engineering Lifecycle of a PLC based application



Hardware upgrades

#### Some challenges

- PLC based control systems life spans for **more than 15 years** in most of the cases. **Development and maintenance** of the PLC applications is a complex task, as usually the applications do not follow any structure but the automation engineer own implementation. Is **standardization** a real need? Do the **control frameworks** give any help on this?
- In the same context **hardware upgrades** constitute a challenge *per se*. The systems engineered with PLCs typically require high availability. Are there general **guidelines** of when an installation must be upgraded and how?
- **Testing** industrial applications is a time consuming task and usually an imperfect exercise. Compromises must be found to the test coverage (e.g. difficult offline tests). What is the **best method to test an application**?
- Deploying applications must be tracked and the software components deployed must be easily traceable.
  In case of an issue in a delivered component in a project, an efficient identification of the affected PLCs should be straight forward. Are you in measure to identify this effectively?

### Agenda

| Workshop introduction                                   | Dr Enrique Blanco Vinuela |
|---------------------------------------------------------|---------------------------|
| Virtual workshop, Shanghai (China) [Virtual]            | 14:00 - 14:10             |
| IEC61499 standard and an industry implementation: 4DIAC | Dr Alois Zoitl            |
|                                                         |                           |
| Virtual workshop, Shanghai (China) [Virtual]            | 14:10 - 15:00             |
| ELETTRA, Trieste, Italy                                 | Massimo Trevi             |
| Virtual workshop, Shanghai (China) [Virtual]            | 15:00 - 15:05             |
| CAS - Beijing, China                                    | Yongcheng He              |
| Virtual workshop, Shanghai (China) [Virtual]            | 15:05 - 15:10             |
| NCBJ - Poland                                           | Jaroslaw Szewinski        |
| Virtual workshop, Shanghai (China) [Virtual]            | 15:10 - 15:15             |
| ALBA - Barcelona, Spain                                 | Jorge Villanueva          |
| Virtual workshop, Shanghai (China) [Virtual]            | 15:15 - 15:20             |
| SNS (ORNL), Tennessee, USA                              | Karen White               |
| Virtual workshop, Shanghai (China) [Virtual]            | 15:20 - 15:25             |

Virtual workshop, Shanghai (China) [Virtual]

15:30 - 15:50



**Technology trends** 

Agenda

**IEC 61499 standard and an industry implementation: 4DIAC** *Dr Alois Zoitl* 

An overview of the main elements of the language, how to apply it and the current industrial adoption

# **Agenda**

| PLC hardware upgrades: basics concepts            | Jeronimo Ortola Vidal     |
|---------------------------------------------------|---------------------------|
| Virtual workshop, Shanghai (China) [Virtual]      | 15:50 - 16:10             |
| CI/CD techniques for quality assurance            | Brad Schofield            |
| Virtual workshop, Shanghai (China) [Virtual]      | 16:10 - 16:30             |
| Formal verification of PLC programs with PLCVerif | Borja Fernandez Adiego 🥝  |
| Virtual workshop, Shanghai (China) [Virtual]      | 16:30 - 16:50             |
| Closing session: Q&A                              | Dr Enrique Blanco Vinuela |
| Virtual workshop, Shanghai (China) [Virtual]      | 16:50 - 17:20             |



### **Testing / verification**

Continuous Integration for PLC-based Control System PLCVerif: A formal verification tool



### Management

**PLC** hardware obsolescence

#### **Support**

Workshop

https://indico.cern.ch/e/PBCS-21

Register if you have not done it!!



#### **Registration remarks**

- **Testing & Verification** is the most *ticked* session (interest)
- Upgrades:
  - [INFN] In INFN-LNL PLCs are used by different groups, for the control of different applications as Cryogenics, vacuum, machine and person safety, air conditioning, target handling and Automatic Guided Vehicle. Mainly 2 brand are used: Schneider and Siemens, while PILZ has been chosen for safety application. Up to know there PLC lifecycle is no managed in a common way, but we have to approach a strategy to start the process.
  - [ALBA] We are at the very initial stages of Alba II, let's say 10 years long project. It implies a major Accelerator update including the PLC-based interlock systems: Equipment Protection System (EPS) and Personnel Protection System (PSS). I would like to survey similar **upgrades** in other facilities and future technological options (experiences in the implementation of the Safety Life Cycle according to IEC 61508 and IEC 61511, development and code testing/verification tools, use of Ethernet networks for safe communication...)
- [SOLEIL] Looking for experience in use of large PLC fleet (100s) administration software (for deployment, firmware updates, status reporting, industrial network management, ...)
- [SOLEIL] Looking for experience in use of software-based **simulators**. Either embedded in PLC code or external (PC-based, writing and reading into the image memory of the PLC to simulate I/O signals). Brands, products, selection criteria, etc...
- [SOLEIL] Use of **OPC UA** as communication layer between SIEMENS PLC and TANGO (or other middleware / supervision software). What are the interesting features and performance of this protocol? Which implementation has already been chosen in other facilities?



### Follow up

- **Survey**: have an idea about how institutes use:
  - Hardware
  - Software
  - Methods
  - Tools

Results will be available for everyone

- Collaboration online space (e.g. Slack, mattermost...)
  - Share experience
  - Questions
  - Contacts