
Realization of a new research facility in Belgium for nuclear innovation addressing societal challenges

A new milestone reached, creation of : MYRRHA AISBL/IVZW

Prof. Gert Van den Eynde Head of Expert Group Nuclear Systems Physics <u>Gert.Van.den.Eynde@sckcen.be</u> or <u>myrrha@sckcen.be</u>

> **Celebrating 20 years of n_TOF** 22 November 2021 - Geneva, Switzerland

MYRRHA: ACCELERATOR DRIVEN SYSTEM

✓ ADS AT PRE-INDUSTRIAL SCALE
 ✓ FLEXIBLE IRRADIATION FACILITY

MYRRHA's Application Portfolio

Radio-isotopes

Mat.& Fuel

GEN IV

SNF*/ Waste

Fusion

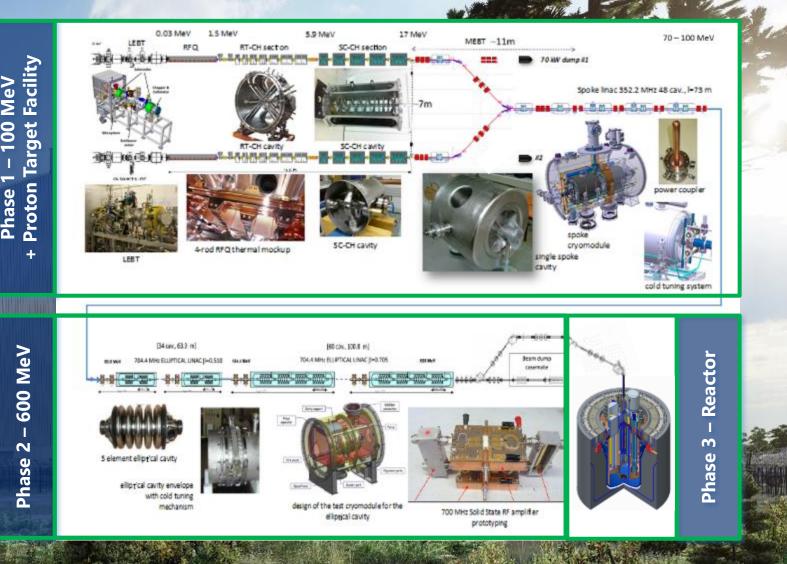
Fundamental research

*SNF = Spent Nuclear Fuel

European Strategy for P&T (2005)

EU P&T Strategy 2005: "The **implementation of P&T** of a large part of the high-level nuclear wastes **in Europe needs the demonstration of its feasibility at an "engineering" level**. The respective **R&D** activities could be **arranged in four "building blocks"**:

P&T building blocks	Description	Name & Location
1 Partitioning	 Demonstrate capability to process a sizable amount of spent fuel from commercial Light Water Reactors to separate plutonium, uranium and minor actinides 	 Atalante (FR)
2 Fuel production	 Demonstrate the capability to fabricate at a semi-industrial level the dedicated fuel needed to load in a dedicated transmuter 	 JRC-ITU (EU)
3 Transmutation	 Design and construct one or more dedicated transmuters 	 MYRRHA (BE)
4 Fuel unloading	 Specific installation to process fuel unloaded from transmuter Not necessarily the same as type to process original spent fuel unloaded from commercial power plants 	

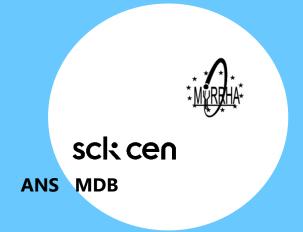

The European Commission contributes to the 4 building blocks and fosters the national programmes towards this strategy for **demonstration at engineering level**.

Source: European Commission Strategy Paper on Partitioning & Transmutation (2005)

MYRRHA'S PHASED IMPLEMENTATION STRATEGY

Benefits of the phased approach:

- already a first
 operational facility
 available in Mol at
 end of 2026
- spreading the investment costs
- successful milestone then next step >> reducing technical & financial risks



Belgian Government decision of 7 September 2018

Belgian Government decision of 7 September 2018 Confirmed on 23 July 2021 (+ creation of MYRRHA NPO)

no yes		Non-Profit Organization	
Decision to build MYRRHA as large	Belgium allocates € 558 m for 2019-2038	Establishment of international non-profit organisation	Government support for establishing MYRRHA
new research infrastructure in	 2019-2026: construction of MINERVA (linac 100 MeV + PTF & FTS) 2019-2026: design, R&D and licensing for Phases 2 (extended linac 600 MeV) & 3 (reactor) 2027-2038: MINERVA operations (linac 100 MeV) 		
Mol, Belgium		MYRRHA	partnerships
		AISBL/IVZW Decided 23.07.2021	Belgium appoints tutorship ministers to promote and negotiate international
		Created 17.09.2021	partnerships

MYRRHA International nonprofit organisation

MYRRHA AISBL: separate legal entity needed to find external partners/investors

Responsability:

blic

- SCK CEN
- Design & build MINERVA
- Conduct R&D for phases 2 ACC-600 & 3 MYRRHA Reactor
- Obtain licenses for Phase 1 and later on for Phases 2 & 3
- Being the nuclear operator of MYRRHA/MINERVA

MYRRHA AISBL

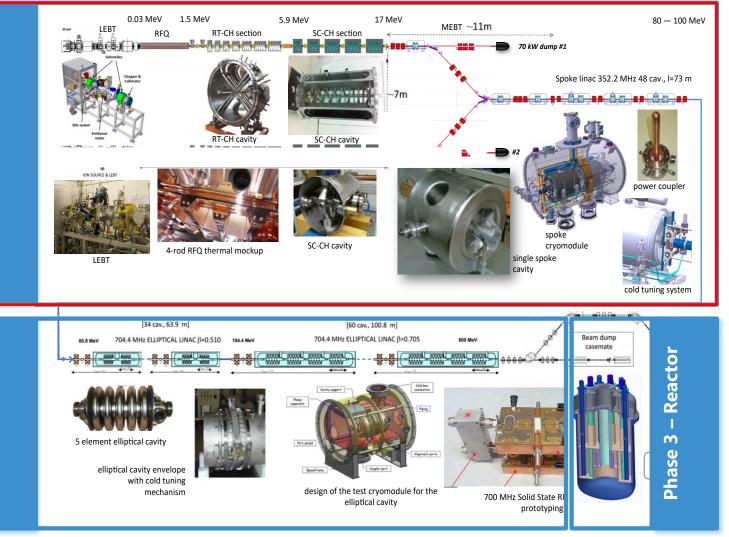
- Establish the MYRRHA International Consortium
- Guarding the overall scope of MYRRHA programme

MYRRHA's phased implementation strategy

UNDER CONSTRUCTION

Phased approach benefits:

00 Me/

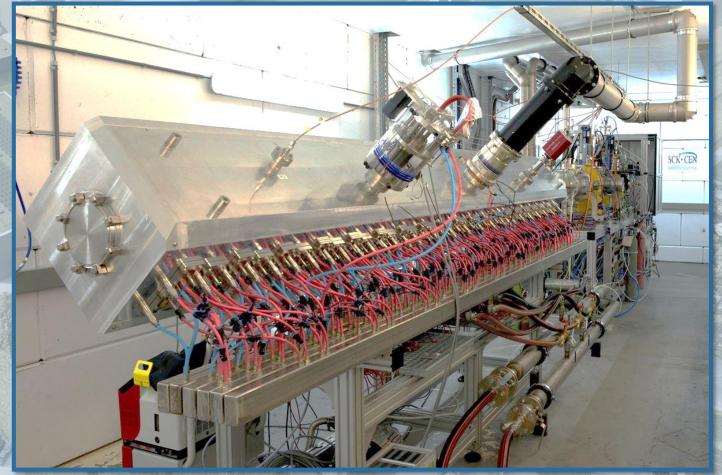

Phase

600 MeV

N

Phase

- Reduced technical risk
- Spreading investment cost
- First R&D facility available in Mol end of 2026



The MYRRHA accelerator takes shape in LLN

MYRRHA protons accelerated successfully

2020 **30** June 2020

The cryomodule prototype of MYRRHA ready for testing

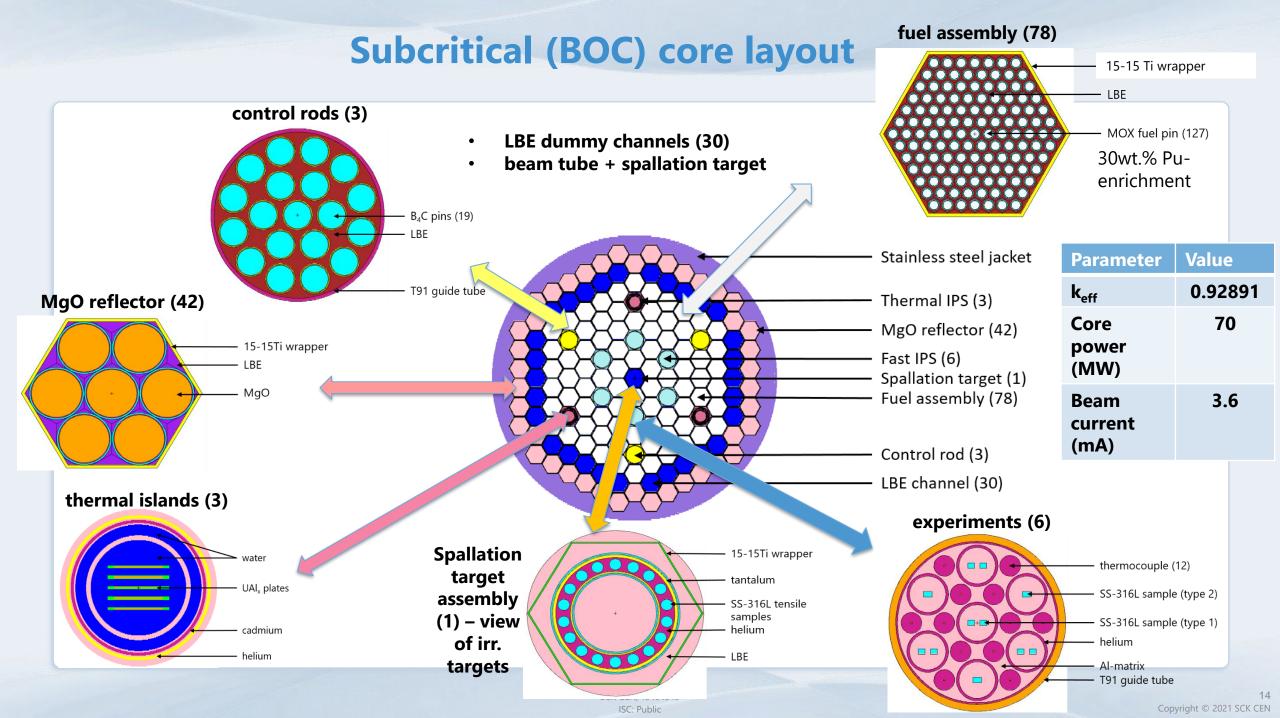
Superconductivity and French prototype: a crucial milestone coming up for MYRRHA 27 November 2020

The 4-rod RFQ shines in LLN

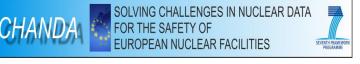
The MYRRHA 4-rod RFQ reach its first success: nominal proton beam delivered intensity of 4 mA and energy of 1,5 MeV

- Transmission through RFQ 98%
- Beam holes ✓, Duty cycle (99,75%: 95% MYRRHA Reactor + 4,75% PTF

4 December 2020


MYRRHA REACTOR: IMPLEMENTATION IN 2036

OBJECTIVES = TRANSMUTATION + RADIOISOTOPES + FUSION MATERIAL R&D + FISSION TECHNOLOGY PLATFORM


7/17/1

Core calculations need good nuclear data

FP7 CHANDA project

Identification of key nuclides and reactions using sensitivity

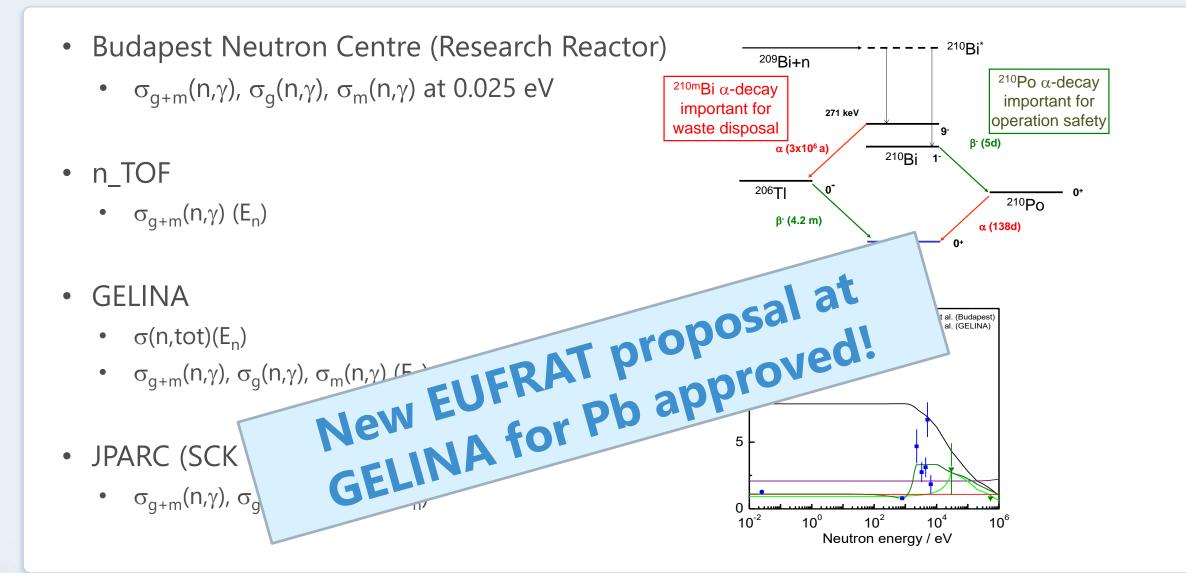
studies Nuclide Quantity/Reaction Nuclide Quantity/Reaction									
studies	Nuclide	Quantity/Reaction	Nuclide	Quantity/Reaction					
	¹⁶ O	σ(n,n)		$\bar{\nu}$	JRC TECHNICAL REPORTS				
	⁵⁶ Fe	σ(n,n)	225	σ(n,f)	Recommendations for MYRRHA				
		σ(n,n')	²³⁵ U	σ(n,γ)	relevant cross section data to the JEFF project				
		σ(n,γ)		σ(n,n)	Guiden Zharonni. Francisco Alvaron servicende Cuar Scalalios Luca Facilia Territoria Control Control Control La Horpet In Kondin Ber Kos Facilia Galineación Ber Kos Facilia Scalalisectón Alvare Statukorsky Gart Van Anto Fande				
	²⁰⁸ Pb	σ(n,n)	²³⁸ U	σ(n,n')	Ive Kodeli Stelan Koped-y Ber Kas Paging Schultberght Kaber Schultberght Alexes Stankovsky Gert Van den Forde				
		σ(n,n')	2280	$\sigma(n,\gamma)$	2017				
	²⁰⁹ Bi	σ(n,n′)	²³⁸ Pu	σ(n,f) <i>v</i>					
		σ(n,γ)	220-	χ					
			²³⁹ Pu	σ(n,f)	Parting Davidson				
				σ(n,γ)					
			²⁴⁰ Pu	$\bar{\nu}$					
			²⁴¹ Pu ²⁴² Pu	σ(n,f)					
			- Fu	σ(n,f)					

Core calculations need good nuclear data

CHANDA

- FP7 CHANDA project
 - Identification of key nuclides and reactions using sensitivity studies

SOLVING CHALLENGES IN NUCLEAR DATA


- Improve evaluated data
 - Improved experimental data
 - n_TOF: (n,f) and (n,γ) (see presentations D. Cano Ott)
 - Actinides: capture on fissile nuclides:
 - ^{233, 235}U(n, γ)
 - ²³⁹Pu, planned
 - Lead, Bismuth
 - Recommendations to the JEFF project
- Continuation in SANDA

IRC TECHNICAL REPORTS

Recommendations for MYRRHA relevant cross section data to the

JEFF project

Example: ²⁰⁹Bi

MYRRHA REACTOR **HIGHLIGHTS**

"Mystery creates wonder, and wonder is the basis of man's desire to understand" said Neil Armstrong

MYRRHA is a wonderful project full of mysteries MYRRHA: a backbone of innovation inspired by Belgium

MYRRHA

Radio-chemistry

- Separation for Partitioning of HLW¹
- Alpha therapy radio-isotopes
- Separation of radio-isotopes for Space Power

Material development

- New fission reactors
- Fusion materials
- But can serve beyond Nuc.En (JPNM)

Fundamental Physics

- RIB² physics
- Rare decays
- Extreme precisions experiments

¹ HLW = High-Level Radio-active Waste ² RIB = Radio-active Ion Beam facility

3

Accelerator technology (reliability ADS)

- Improve availability of accelerator facilities
- Brilliance
- Performance
- Economy

HLM³ technology

- Fusion technology
- New reactor technology (LFR/SMR)
- Heat storage for solar power

Beyond U fuel cycle & Electricity

- Thorium => ADTR⁴, Molten Salt ADS/Reac.
- Cogen : Elec+Heat, Elec+H₂

³ HLM = Heavy Liquid Metal technology (as coolant for reactors) ⁴ ADTR = Accelerator Driven Thorium Reactor

As Newton said

ants." "If I have seen further it is by standing on the shoulders.

- uea happy in what has been done in thout your "ithout your"

en active

what has been done in

Copyright © 2021 – SCK CEN

PLEASE NOTE! This presentation contains data, information and formats for dedicated use ONLY and may not be copied, distributed or cited without the explicit permission of the SCK CEN. If this has been obtained, please reference it as a "personal communication. By courtesy of SCK CEN".

SCK CEN Belgian Nuclear Research Centre

Stichting van Openbaar Nut Fondation d'Utilité Publique Foundation of Public Utility

Registered Office: Avenue Herrmann-Debrouxlaan 40 – B-1160 BRUSSELS Operational Office: Boeretang 200 – B-2400 MOL