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Neutrino Oscillations
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Neutrino Mixing and Oscillations
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Δ𝑚32
2 ≈ |Δ𝑚31

2 | ~2.5 × 10−3𝑒𝑉2

Δ𝑚21
2 ~ 7.5 × 10−5𝑒𝑉2

𝜃23~ 45𝑜

𝜃12~ 34o

𝜃13~ 8. 4𝑜

The last known oscillation angle，
Need sizable 𝜃13 for CP violation measurement

𝜃23 Octant?



𝜃13 Measurement Strategies

• Accelerator-Neutrinos  exploring 𝑃 𝜈𝜇 → 𝜈𝑒
• Leading term : sin2 2𝜃13 sin

2 𝜃23 sin
2 Δ31 +

𝑐𝑜𝑠2𝜃13cos
2 𝜃23 sin

2 2𝜃12 sin
2 Δ21

• Higher order terms depend on 𝛿𝑐𝑝 and mass ordering

• Reactor neutrinos  @ ~  Km
• A clean measurement of 𝜃13: No CP phase term , 

Negligible matter effect
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Commentary approaches: 𝜃13 measured in reactor experiments can serve as
constrains in accelerator neutrino studies and helps to entangle the correlations 
among unknown parameters  



Measuring 𝜃13 nearby  reactors

𝑃 𝜈𝑒 → 𝜈𝑒 = 1 − cos4 𝜃13 sin
2 2𝜃12 sin

2 Δ21

−sin2 2𝜃13(cos
2 𝜃12 sin

2 Δ31 + sin2𝜃12 sin
2 Δ32)Δij ≡ Δ𝑚𝑖𝑗

2 𝐿/4𝐸

Oscillation amplitude

controlled by 𝐬𝐢𝐧𝟐 𝟐𝜽𝟏𝟑

Oscillation frequency 
Driven by Δ𝑚32

2 ≈ Δ𝑚31
2
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Chooz and Palo Verde experiments 
determined 𝜃13 < 11𝑜 90% 𝐶. 𝐿

Previous short baseline reactor 
neutrino experiments showed 
no evidence of oscillation



Improve the sensitivity
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• Near/Far relative measurement

• First proposed by L.A Mikaelyan and V.V SineV ,
Phys. Atomic Nucl.63 1002(2000) 

• Minimal dependence on our knowledge of reactor neutrino 
flux:  the largest uncertainty in previous measurements

• Powerful Reactors
• Optimize baseline
• Large overburden : lower the cosmogenic  backgrounds
• Identical Detector Design: 

• Three zone design with Gd-doping
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]



𝜃13 reactor neutrino  experiments  
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Daya Bay

RENO

Double Chooz

RENO
Double Chooz

Daya Bay    

Reactor(GW) Target(Ton) Depth(m.w.e)

Double Chooz 8.5 16(2*8) 120/300 (near/far)

RENO 16.5 32(2*16) 120/450 

Daya Bay 17.4 160(2*20) 250,300/870
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Antineutrino Detectors (AD)
• 𝜈𝑒 are detected via Inverse Beta Decays (IBDs) : 

𝑣𝑒+𝑝 → 𝑒+ + 𝑛

• 3-zone detector module 

• immersed in water pool, providing shielding 
and muon tagging
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𝜎𝐸
𝐸
≈
8.5%

𝐸



The discovery of nonzero 𝜃13
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Daya Bay:    Nonzero θ13 @ 5.2 σ  PRL 108,171803(2012)
Reno:    Confirms nonzero θ13 PRL 108,191802(2012)   

hints in 2011:
▪Solar + KamLAND: Phys. Rev. D 84, 053007 (2011)
▪MINOS: Phys. Rev. Lett. 107, 181802 (2011)
▪T2K:     Phys. Rev. Lett. 107 041801 (2011)
▪Double CHOOZ: arXiv:1112.6353  



Latest Oscillation Results
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Phys.Rew.Lett. 121, 241805 (2018)

sin2 2𝜃13 = 0.0856 ± 0.0029
Δ𝑚32

2 = 2.471−0.070
+0.068 × 10−3𝑒𝑉2

Δ𝑚32
2 = −2.575−0.070

+0.068 × 10−3𝑒𝑉2 Daya Bay dominates the global precision

Daya Bay 1958Day

Precision Projection:sin22θ13 uncertainty 3.4%➔2.7%
Δm2

ee uncertainty 2.8% ➔ 2.1%



Reactor Neutrino Flux Measurements
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- IBD yield agree with other short baseline experiments, agree with old reactor flux 
model , but is about 95% of Huber+Muller (   “Reactor Antineutrino Anomaly”   ) 

- Where do neutrinos go? 
- Experimental Efforts
- Theoretical Efforts

Old(ILL + Vogel)  

Phys. Rev.D 100, 052004(2019)

DYB  1230 Days



Spectra Shape Measurement
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RENO-2016

The measured IBD positron energy spectrum deviates from spectral prediction (Huber + 
Muller)   
Last result shows  an overall > 5 σ discrepancy  and maximal local deviation of > 6σ
No effects on oscillation study which  employs near/far relative measurement strategy 
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DYB 1958 Days

“5MeV Bump”



IBD Yield Study Using Fuel Evolution 
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- Clear correlation between 𝜈𝑒 yield and 
fuel evolution 
- inconsistent with Huber+Muller

model at 3 σ, indicating non-equal 
fractional deficit of the 4 isotopes , 
that results to  the overall   
measured  flux deficit compared 
with theory prediction 

DYB : Phys. Rev. Lett. 118, 251801(2017)



IBD Yield Study Using Fuel Evolution 
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Extract individual yield for the two dominant isotopes(235U, 239Pu) using constraints
from two minor ones (238U,241Pu) 
Identified 235U as the primary source for the RAA

DYB :Phys.Rev.Lett. 118, 251801(2017)
RENO: Phys. Rev.Lett. 122, 232501 (2019)



Spectra Measurement Using Fuel Evolution 
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Phys. Rev. Lett. 123, 111801(2019)

DYB 1958 Days First measurement of 235U , 239Pu 
Spectra from commercial reactors
by Daya Bay

Similar bump excess for 235U and
239Pu in 4-6MeV :
- Local spectral deviation from 

prediction: 

up to 4 𝜎 for 235U
~ 1.2 𝜎 for 239Pu



Data-Driven reactor neutrino flux prediction
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- Total and individual ҧ𝜈𝑒 energy spectra are unfolded by Wiener-SVD method
- Given a reactor fission fractions,  one can predict the energy spectrum to a 2% precision



Improve spectral measurement with joint 
analysis by Daya Bay and PROSPECT
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arXiv: 2106.12251

PROPECT data provides constrains on 235U spectrum
Relative uncertainty of the spectral shape of 235U  improved 3.5%->3.0% around 3MeV



Summary 
• DC, Reno, DYB have  provided an unambiguous 

measurement of 𝜃13 .Final precision of  2.7% on 
sin2 2𝜃13 is expected from Daya Bay.  This  will  be 
the standard for decades to come.

• With high precision, large statistics , 𝜃13 reactor 
experiments have precisely measured reactor 
neutrino flux and spectra. The deviation from 
theory is evoking active study on reactor flux  both 
theoretically and experimentally.

• 𝜃13 reactor experiments are reaching to their life 
circles. Final results are coming . Stay tuned.
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BACK UPS

2021/09/13-17 HQL2021  University of Warwick 20



Sterile Neutrino searches
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- Minimally extended 4𝜈 scenario
- Searching for an additional spectral distortion 

with a frequency different from the standard 3 𝜈
oscillation 

- Sensitive to mass square differences in sub-eV range

𝑃 ҧ𝜈e → ҧ𝜈e ≈ 1 − sin2 2𝜃13 sin
2 Δ31 − sin2 2𝜃14 sin

2 Δ41

For LSND & miniBooNE:   𝑃 − (−)
𝜈𝜇 → 𝜈𝑒

𝑆𝐵𝐿 ≈ 4 𝑈𝑒4
2 𝑈𝜇4

2
sin2 Δ41

4 𝑈𝑒4
2 𝑈𝜇4

2
= sin22𝜃14 sin

2 𝜃24 ≡ sin2 2𝜃𝜇𝑒



Sterile Neutrino searches

2021/09/13-17 HQL2021  University of Warwick 22

P
h

ys
.R

ev
.L

et
t

1
2

5
, 0

7
1

8
0

1
(2

0
2

0
)

Phys. Rev. Lett. 125, 191801 (2020)

RENO 2200Days



Oscillation Measurement Prospects

• Daya Bay and  Double Chooz have stopped data taking 

• High statistic reactor neutrino data provides a good 
opportunity to study the reactor neutrino flux, which 
contains  complications  by itself.
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