

θ_{13} Reactor Neutrino Experiments

Qun Wu Shandong University

Neutrino Oscillations

 $|\nu_{\alpha}
angle = \sum_{\alpha i} U^{*}_{\alpha i} |\nu_{i}; p
angle$

Different neutrino masses will create phase differences after the time t

Lepton Sector

$$U_{PMNS} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix}$$

Quark Sector

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Neutrino Mixing and Oscillations

θ_{13} Measurement Strategies

- Accelerator-Neutrinos exploring $P(\nu_{\mu} \rightarrow \nu_{e})$
 - Leading term : $\sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta_{31} + \cos^2 \theta_{13} \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$
 - Higher order terms depend on δ_{cp} and mass ordering
- Reactor neutrinos @ ~ Km
 - A clean measurement of θ_{13} : No CP phase term , Negligible matter effect

Commentary approaches: θ_{13} measured in reactor experiments can serve as constrains in accelerator neutrino studies and helps to entangle the correlations among unknown parameters

Measuring θ_{13} nearby reactors

 $P(\overline{\nu}_e \to \overline{\nu}_e) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$ $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})$

Improve the sensitivity

Near/Far relative measurement

$$\frac{N_f}{N_n} = \left(\frac{N_{p,f}}{N_{p,n}}\right) \left(\frac{L_n}{L_f}\right)^2 \left(\frac{\epsilon_f}{\epsilon_n}\right) \left[\frac{P_{sur}(\sin^2 2\theta_{13}, E, L_f)}{P_{sur}(\sin^2 2\theta_{13}, E, L_n)}\right]$$

- First proposed by L.A Mikaelyan and V.V SineV , Phys. Atomic Nucl.63 1002(2000)
- Minimal dependence on our knowledge of reactor neutrino flux: the largest uncertainty in previous measurements
- Powerful Reactors
- Optimize baseline
- Large overburden : lower the cosmogenic backgrounds
- Identical Detector Design:
 - Three zone design with Gd-doping

θ_{13} reactor neutrino experiments

HQL2021 University of Warwick

2021/09/13-17

Daya Bay Layout

Entrance

3 Underground Experimental Halls Ling Ao Near Hall 470 m from Ling Ao I 558 m from Ling Ao II 100 m overburden

Daya Bay Near Hall 363 m from Daya Bay 93 m overburden

- Daya Bay Cores

Ling Ao II Cores

■ 17.4 GW_{th} power

- 8 operating detectors
- 160 t total target mass

Antineutrino Detectors (AD)

The discovery of nonzero $heta_{13}$

hints in 2011:

Solar + KamLAND: Phys. Rev. D 84, 053007 (2011)
 MINOS: Phys. Rev. Lett. 107, 181802 (2011)
 T2K: Phys. Rev. Lett. 107 041801 (2011)
 Double CHOOZ: arXiv:1112.6353

Daya Bay: Nonzero θ₁₃ @ 5.2 σ PRL 108,171803(2012) **Reno:** Confirms nonzero θ₁₃ PRL 108,191802(2012)

Latest Oscillation Results

 $\sin^2 2\theta_{13} = 0.0856 \pm 0.0029$ $\Delta m_{32}^2 = (2.471^{+0.068}_{-0.070}) \times 10^{-3} eV^2$ $\Delta m_{32}^2 = (-2.575^{+0.068}_{-0.070}) \times 10^{-3} eV^2$

Phys.Rew.Lett. 121, 241805 (2018)

Daya Bay dominates the global precision

Precision Projection:sin²2 θ_{13} uncertainty 3.4% \rightarrow 2.7% Δm_{ee}^{2} uncertainty 2.8% \rightarrow 2.1%

Reactor Neutrino Flux Measurements

- IBD yield agree with other short baseline experiments, agree with old reactor flux model, but is about 95% of Huber+Muller ("Reactor Antineutrino Anomaly")
- Where do neutrinos go?
 - Experimental Efforts
 - Theoretical Efforts

Spectra Shape Measurement

The measured IBD positron energy spectrum deviates from spectral prediction (Huber + Muller)

Last result shows an overall > 5 σ discrepancy and maximal local deviation of > 6 σ No effects on oscillation study which employs near/far relative measurement strategy

IBD Yield Study Using Fuel Evolution

IBD Yield Study Using Fuel Evolution

Extract individual yield for the two dominant isotopes(²³⁵U, ²³⁹Pu) using constraints from two minor ones (²³⁸U,²⁴¹Pu) Identified ²³⁵U as the primary source for the RAA

Spectra Measurement Using Fuel Evolution

First measurement of ²³⁵U , ²³⁹Pu Spectra from commercial reactors by Daya Bay

Similar bump excess for ²³⁵U and ²³⁹Pu in 4-6MeV :

 Local spectral deviation from prediction:

up to 4 σ for ²³⁵U ~ 1.2 σ for ²³⁹Pu

Data-Driven reactor neutrino flux prediction

- Total and individual $\bar{\nu}_e$ energy spectra are unfolded by Wiener-SVD method
- Given a reactor fission fractions, one can predict the energy spectrum to a 2% precision

Improve spectral measurement with joint analysis by Daya Bay and PROSPECT

PROPECT data provides constrains on ²³⁵U spectrum Relative uncertainty of the spectral shape of ²³⁵U improved 3.5%->3.0% around 3MeV

Summary

- DC, Reno, DYB have provided an unambiguous measurement of θ_{13} . Final precision of 2.7% on $\sin^2 2\theta_{13}$ is expected from Daya Bay. This will be the standard for decades to come.
- With high precision, large statistics , θ_{13} reactor experiments have precisely measured reactor neutrino flux and spectra. The deviation from theory is evoking active study on reactor flux both theoretically and experimentally.
- θ_{13} reactor experiments are reaching to their life circles. Final results are coming . Stay tuned.

BACK UPS

Sterile Neutrino searches

- Minimally extended 4ν scenario
- Searching for an additional spectral distortion with a frequency different from the standard 3 ν oscillation
- Sensitive to mass square differences in sub-eV range

$$P(\bar{\nu}_{\rm e} \rightarrow \bar{\nu}_{\rm e}) \approx 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{31} - \sin^2 2\theta_{14} \sin^2 \Delta_{41}$$

For LSND & miniBooNE:
$$P_{(-)}^{SBL} \underset{\nu_{\mu} \rightarrow \nu_{e}}{(-)} \approx 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\Delta_{41}$$

$$4|U_{e4}|^2 |U_{\mu4}|^2 = \sin^2 2\theta_{14} \sin^2 \theta_{24} \equiv \sin^2 2\theta_{\mu e}$$

Sterile Neutrino searches

Oscillation Measurement Prospects

- Daya Bay and Double Chooz have stopped data taking
- High statistic reactor neutrino data provides a good opportunity to study the reactor neutrino flux, which contains complications by itself.