Sterile Neutrino Searches at Accelerators

Michael Mooney
Colorado State University

The XV International Conference on Heavy Quarks and Leptons, University of Warwick, UK
September 17th, 2021
Are there other neutrinos aside from the three SM neutrinos?

- Probe of sterile neutrinos at accelerators: \(\nu_\mu \rightarrow \nu_e\)

Two-Flavor Approximation:

\[
P_{\alpha \rightarrow \beta, \alpha \neq \beta} = \sin^2(2\theta) \sin^2 \left(\frac{\Delta m^2 L}{E} \right)
\]
Motivation:
LSND and MiniBooNE
The LSND Anomaly

- **LSND**: Liquid Scintillator Near Detector (Los Alamos National Lab)
 - Mainly $\bar{\nu}_\mu$ from stopped μ^+ decay at rest
 - $L/E \sim 1 \text{ m/MeV}$ ($L \sim 30 \text{ m}, E \sim 30 \text{ MeV}$)
- Excess of $\bar{\nu}_e$-like events observed
 - 3.8σ excess; Δm^2 in $[0.2, 10]$ eV2 range
MiniBooNE: ~800 t mineral oil Cherenkov detector on FNAL Booster Neutrino Beamline (BNB)

- Mainly $\nu_\mu/\bar{\nu}_\mu$ from π/μ decay in flight
- $L/E \sim 1$ ($L \sim 500$ m, $E \sim 500$ MeV)

17 years of operation in total

- 3×10^{21} POT (protons on target)
The MiniBooNE Anomaly

- Low-energy $\nu_e / \bar{\nu}_e$ candidate excess (LEE) also seen at MiniBooNE
 - Baseline too short ($L = 541$ m) for 3-flavor $\nu_\mu \rightarrow \nu_e$ oscillation
 - 4.8σ excess $\rightarrow 6.1 \sigma$ when combined with LSND (consistent results)

- No e^\pm/γ separation... is excess misunderstood background, sterile neutrino, or... ?

PRD 103, 052002 (2021)
Some Tension

Tension between ν_μ disappearance (left) and ν_e appearance (right) results, which show incompatibility.

Important to clarify this issue, e.g. by measuring ν_μ disappearance and ν_e appearance at same experiment (SBN).
Some Tension

C. Ternes (Yesterday’s Talk)

- Tension between ν_μ disappearance (left) and ν_e appearance (right) results, which show incompatibility
- Important to clarify this issue, e.g. by measuring ν_μ disappearance and ν_e appearance at same experiment (SBN)
Liquid Argon Time Projection Chambers (LArTPCs)
Introducing... the LArTPC

♦ Liquid Argon Time Projection Chamber

♦ Advantages of LArTPC detectors

 • *Low Thresholds* – important for detecting low-energy particles (e.g. protons from hadronic part of neutrino interactions)
 • *Excellent Calorimetry* – important for precise estimation of neutrino energy, particle ID with dE/dx
 • *High Spatial Resolution* – allows for background rejection and particle ID
 • *Scalability* – large detectors yielding high event rates for precision physics

♦ LArTPCs can help with e/γ separation

 • Addresses limitation at MiniBooNE
Signal Formation

Cathode Plane

$E_{\text{drift}} \sim 500 \text{ V/cm}$

Three Anode Wire Planes
Signal Formation

Cathode Plane

$E_{drift} \sim 500 \text{ V/cm}$

Drift

MicroBooNE Data

Three Images (One Per Wire Plane)
Two ways to discriminate e/γ with LArTPCs:

- Shower displacement from vertex ("gap") for γ (none for e)
- Factor of two difference in dE/dx (γ double that of e)
Short Baseline Neutrino (SBN) Program
SBN Program: three LArTPC detectors @ FNAL BNB

- Same beamline as MiniBooNE (BNB), but with e/γ discrimination
- SBND (Short Baseline Near Detector): provides flux/xsec constraint
- MicroBooNE/ICARUS: measure oscillated neutrino rate
MicroBooNE (μBooNE)

♦ MicroBooNE: “Micro Booster Neutrino Experiment”

♦ Notable details:
 • Taking data between 2015 and 2021
 • Cold (in LAr) front-end electronics (same for SBND, but not ICARUS)
 • UV laser calibration system

♦ Physics goals:
 • Investigate MiniBooNE low-energy excess (LEE)
 • Measure first low-energy ν-Ar cross sections
 • Key step for SBN Program
 • R&D for Deep Underground Neutrino Experiment (DUNE)
Two distinct LEE approaches:

- ν_e analyses (three in total):
 - MiniBooNE-like final state ($1eNp/1e0p$)
 - Quasi-elastic kinematics w/ ML ($1e1p$)
 - All ν_e final states ($1eX$)
- Single photon production ($1\gamma1p/1\gamma0p$)

Expect first public LEE results to come out soon
♦ ICARUS began commissioning in 2020, collecting first neutrino data in June 2021; transitioning to physics data collection in October 2021

♦ Stable noise levels (S/N > 10), good electron lifetime (> 3 ms)

♦ Expected BNB/NuMI rates observed via light flashes in PMTs
ICARUS Status

♦ ICARUS began commissioning in 2020, collecting first neutrino data in June 2021; transitioning to physics data collection in October 2021

♦ Stable noise levels (S/N > 10), good electron lifetime (> 3 ms)

♦ Expected BNB/NuMI rates observed via light flashes in PMTs
ICARUS was the primary BNB user @ FNAL during the full month of June 2021 (“Run 0”)

- 27.8×10^{18} POT from BNB and 52.0×10^{18} POT from NuMI were collected
♦ Cathode installed in TPC; rest of components ready at FNAL
♦ Warm outer vessel installed in building; cryostat top fabricated and cryogenics/cryostat installation in progress
♦ SBND ready for cold commissioning by end of 2022
♦ Cathode installed in TPC; rest of components ready at FNAL
♦ Warm outer vessel installed in building; cryostat top fabricated and cryogenics/cryostat installation in progress
♦ SBND ready for cold commissioning by end of 2022
Reflects **2-3 years** of neutrino-mode data-taking at **ICARUS and SBND** (double dataset for MicroBooNE)

SBN only probe of both ν_e **appearance and** ν_μ **disappearance**

at same experiment
Beyond SBN
♦ **JSNS²**: J-PARC Sterile Neutrino Search at the J-PARC Spallation Neutron Source – liquid scintillator w/ Gd-doping

♦ **Direct test of LSND anomaly**: nearly identical source (μ DAR), target (liquid scintillator), and baseline (~25 m)

 - First data collection in **June 2020, first half of 2021** (analysis ongoing); upgrade planned w/ more data-taking starting in **2023**
Accelerator neutrino experiments have much to say about potentiality of sterile neutrinos

- Previous anomalies:
 - LSND
 - MiniBooNE

- Running/upcoming experiments:
 - MicroBooNE
 - SBN Program (SBND and ICARUS joining MicroBooNE)
 - JSNS2

Given experimental landscape, next few years should be very exciting for this topic!
Thanks!