

Latest Oscillation Results from the NOvA Experiment

NuMI Off-Axis v_e Appearance Experiment (NOvA)

- Muon neutrino beam at Fermilab near Chicago
- Longest baseline in operation (810 km), large matter effect, sensitive to mass ordering
- Far/Near detector sited 14 mrad off-axis, narrow-band beam around oscillation maximum

Neutrino Beam Performance

ν_{μ} event rates at FD in neutrino beam

anti- ν_{μ} event rates at FD in antineutrino beam

Neutrino beam data: 13.6x10²⁰ Protons on Target (POT), (+54% over 2019)

Antineutrino data: 12.5 x 10²⁰ POT

Charge select pions to get 96% (83%) pure muon-neutrino, (anti-muon-neutrino) beam.

Exceed 700 kW design goal since Jan 2017

Upgrading beamline targets, horns and accelerator to achieve >=900 kW

NOvA Detectors

Far Detector (FD):

• 14-kton, fine-grained

- Detectors are composed of PVC modules extruded to form long tube-like cells
- Each cell: filled with liquid scintillator, has wavelength-shifting fiber (WLS) routed to Avalanche Photodiode (APD)
- Cells arranged in planes, assembled in alternating vertical and horizontal directions
 - → 3-D information of neutrino interactions

NOvA Detectors

Neutrino Interaction Tuning

- Upgrade to GENIE 3.0.6 in 2020 (more models)
- Chose the most "theory-driven" available set of models along with GENIE's re-tune of some parameters
- Custom tuning for both central values and systematics:
 - Final State Interactions: external π -scattering data
 - Meson Exchange Current (MEC, Multi-nucleon interaction, 2p2h): amount tuned in 2D space to match NOvA ND data $(q_0 = E_{\nu} E_{\mu}, |q| = |p_{\nu} p_{\mu}|)$

T. Katori, AIP Conf. Proc. 1663, 030001 (2015)]

6

Deep-Learning based neutrino classifier (PID)

- CVN: a convolutional neural network (CNN), based on modern image recognition technology
- Extract features directly from pixel maps
- Statistical power equivalent to 30% more exposure than previous neutrino classifiers

Select v_{μ} (\bar{v}_{μ}) CC and v_{e} (\bar{v}_{e}) CC candidates from neutrino (antineutrino) beam with CVN in Near Detector (ND) and Far Detector (FD)

Energy Reconstruction and Extrapolation

Overall Resolution:~11%

- Signal neutrino energy is the sum of muon/electron and hadronic energy.
- Observe data-MC differences in neutrino energy spectrum at the ND, extrapolate them to modify the FD MC prediction (significantly reduce systematics)
- Systematic uncertainties determined in ND also extrapolated to FD

Energy Reconstruction and Extrapolation

- Signal neutrino energy is the sum of muon/electron and hadronic energy.
- Observe data-MC differences in neutrino energy spectrum at the ND, extrapolate them to modify the FD MC prediction (significantly reduce systematics)
- Systematic uncertainties determined in ND also extrapolated to FD

v_{μ} and \bar{v}_{μ} Data at Far Detector

• FD selection:

Additional Boosted Decision Tree (BDT) to reduce cosmic backgrounds

- Observe 211 events
- Total bkg prediction: 9.3 events

Anti-Neutrino beam:

- Observe 105 events
- Total bkg prediction: 2.8 events

v_e and \bar{v}_e Data at Far Detector

- ND data split into low and high PID ranges and extrapolate to FD
- FD selection: Add a region close to detector top with tighter cosmic ray cuts to count more signal events

Neutrino beam:

- Observe $82 v_e$ like events
- Total bkg prediction: 26.8:1.0 wrong sign, 22.7 beam bkg, 3.1 cosmic

Anti-Neutrino beam:

- Observe 33 $\bar{\nu}_e$ like events
- Total bkg prediction: 14.0: 2.3 wrong sign, 10.2 beam bkg, 1.6 cosmic

 $>4 \sigma \bar{\nu}_{\rho}$ appearance

Extract oscillation parameters by fitting oscillation-weighted FD MC to FD data

Joint Appearance and Disappearance

- Use frequentist analysis Feldman-Cousins method to infer oscillation parameters
- $\sin^2\theta_{13} = 0.085 + -0.003$ constrained from PDG avg. of reactor data
 - Best fit:
 - Normal Mass Hierarchy
 - $-\sin^2\theta_{23} = 0.57 + 0.03 0.04$ (UO)
 - $\Delta m^2_{32} = (2.41 + 0.07 0.07) * 10^{-3} \text{ eV}^2$
- Disfavor maximal mixing (θ_{23} =45°) at 1.1 σ
- Disfavor lower octant (θ_{23} <45°) at 1.2 σ

Joint Appearance and Disappearance

- Normal Mass Hierarchy (m₃>m_{1,2})
- $-\delta_{CP}=0.82 \pi$
- $-\sin^2\theta_{23} = 0.57 + 0.03 0.04$ (UO)
- $\Delta m_{32}^2 = (2.41 + 0.07 0.07) * 10^{-3} \text{ eV}^2$
- Exclude $\delta_{CP} = \pi/2$ in IH at $> 3\sigma$
- Disfavor (NH, $\delta_{CP}=3\pi/2$) at $\sim 2\sigma$
- Disfavor Inverted Mass Ordering at 1.0σ

Compare with Other Experiments

NOvA's allowed 90% C.L. regions are compatible to other experiments

Agreement across many precision measurements about values of "atmospheric" parameters

- Apparent tension in allowed values of δ_{CP}
- NOvA & T2K are working on a fully selfconsistent joint fit (including systs)

Summary and Prospect

- NOvA new results
 - Precisely measured $\sin^2\theta_{23} = 0.57 + 0.03 0.04$ and $\Delta m_{23}^2 = (2.41 + 0.07 - 0.07) * 10^{-3} \text{ eV}^2$
 - Exclude $\delta_{CP} = \pi/2$ in IH at $> 3\sigma$
 - Disfavor (NH, $\delta_{CP}=3\pi/2$) at $\sim 2\sigma$

Mass Ordering Significance

- NOvA is running through 2026, test beam program and potential accelerator improvement to enhance ultimate reach
- Optimistically, if $\delta_{CP}=3\pi/2$, 4-5 σ sensitivity to Mass Ordering
- >=3 σ sensitivity to Mass Ordering for 30-50% of δ_{CP} values (depends on θ_{23} and true ordering)

Backup

NuMI Off-Axis Beam

Charge select pions to get 96% (83%) pure muon-neutrino, (anti-muon-neutrino) beam.

Oscillation Analysis Process

Measure neutrino flavor change vs. energy over a long travel distance to determine oscillation parameters:

- Identify v_e and v_μ charge current events from cosmic rays and beam backgrounds (PID)
- Reconstruct neutrino energy and other kinematic variables
- Observe differences between data and MC simulation at Near Detector (ND), extrapolate them to Far Detector (FD) to correct FD MC
- Infer oscillation parameters by fitting oscillation-weighted FD MC to FD data
 - + Tune interaction models based on ND data and external data, mitigating uncertainties on neutrino flux, cross sections, and detector response

Neutrino Interaction Tuning

- Upgrade to GENIE 3.0.6 in 2020 (more models)
- Chose the most "theory-driven" available set of models along with GENIE's re-tune of some parameters
- Custom tuning for both central values and systematics:
 - Final State Interactions: external π -scattering data
 - Meson Exchange Current (MEC, Multi-nucleon interaction, 2p2h): amount tuned in 2D space to match NOvA ND data $(q_0 = E_v E_\mu, |q| = |p_v p_\mu|)$

T. Katori, AIP Conf. Proc. 1663, 030001 (2015)]

Process	Model	Reference
Quasielastic	Valencia plus Z- expansion form factor	A. Meyer, M. Betancourt, R. Gran, R. Hill, Phys. Rev. D 93 (2016)
MEC	Valencia w/ custom tune	R. Gran, J. Nieves, F. Sanchez, M. Vicente Vacas, Phys. Rev. D88 (2013)
Resonance	Berger-Sehgal	Ch. Berger, L. M. Sehgal, Phys. Rev. D76 (2007)
DIS	Bodek-Yang	A. Bodek and U. K. Yang, NUINT02, Irvine, CA (2003)
Final State Interactions	hN w/ custom tune	S. Dytman, Acta Physica Polonica B 40 (2009)

Energy reconstruction and Extrapolation

- 1. ND Data Reco E_v 2. ND Reco-to-True E_v Weighting 3. ND True E_v 4. Far / Near Ratio 5. Oscillations Probability 6. FD True Ev 7. FD True-to-Reco E_v Weighting 8. Predicted FD Reco E_v
- The extrapolation for v_{μ} disappearance is divided into 4 bins in hadronic energy fraction called quartiles, each bin
- For v_e appearance the ND v_μ CC data and intrinsic beam v_e background are extrapolated separately

Joint Appearance and Disappearance

 $\nu_e/\overline{\nu}_e$ appearance event counts and best fit from $\nu_e/\overline{\nu}_e + \nu_\mu/\overline{\nu}_\mu$ combined analysis

- Disfavor maximal mixing (θ_{23} =45°) at 1.1 σ
- Disfavor lower octant (θ_{23} <45°) at 1.2 σ
- Consistent with all δ_{CP} values in NH at $< 1.1\sigma$
- Exclude $\delta_{CP} = \pi/2$ in IH at $> 3\sigma$
- Disfavor (NH, $\delta_{CP}=3\pi/2$) at $\sim 2\sigma$
- Disfavor inverted mass ordering at 1.0σ

Mass Ordering Significance vs. Year

