Top-antitop pair-production and single top production cross-section at the LHC

XV International Conference on Heavy Quarks and Leptons September 13-17, 2021, Warwick, United Kingdom

PROLAY_MAL NATIONAL INSTITUTE OF SCIENCE EDUCATION & RESEARCH BHUBANESWAR, INDIA

The Top Quark

- The unique quark that decays before the hadronization [lifetime ~ 0.5x10⁻²⁴ sec]
 - Scope of studying the bare quark through its decay products
- Heaviest known elementary particle
 - \square m_{top} = 172.76 ± 0.3 GeV/c² [PDG 2020]
- C Known properties within the SM:
 - Electric charge +2/3 e
 - Strong & electroweak production
 - Isospin partner of bottom quark
 - Large coupling to the Higgs boson
 - Special role in EWSB
 - □ Br(t→W⁺b)≈100%

LHCTopWG	m _{top} summary, √s = 7-13 TeV	April 2021		
World comb. (Mar 2014) [2] stat	total stat			
total uncertainty	$m_{top} \pm total (stat \pm syst)$	vs Ref.		
LHC comb. (Sep 2013) LHCtopWG	173.29 \pm 0.95 (0.35 \pm 0.88)	7 TeV [1]		
World comb. (Mar 2014)	173.34 \pm 0.76 (0.36 \pm 0.67)	1.96-7 TeV [2]		
ATLAS, I+jets	$172.33 \pm 1.27 \; (0.75 \pm 1.02)$	7 TeV [3]		
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]		
ATLAS, all jets	175.1 ± 1.8 (1.4 ± 1.2)	7 TeV [4]		
ATLAS, single top	$172.2\pm2.1~(0.7\pm2.0)$	8 TeV [5]		
ATLAS, dilepton	$172.99 \pm 0.85 \; (0.41 \pm 0.74)$	8 TeV [6]		
ATLAS, all jets		8 TeV [7]		
ATLAS, I+jets	$172.08 \pm 0.91 (0.39 \pm 0.82)$	8 TeV [8]		
ATLAS comb. (Oct 2018)	172.69 \pm 0.48 (0.25 \pm 0.41)	7+8 TeV [8]		
ATLAS, leptonic invariant mass (*)	174.48 ± 0.78 (0.40 ± 0.67)	13 TeV [9]		
CMS, I+jets	$173.49 \pm 1.06 \; (0.43 \pm 0.97)$	7 TeV [10]		
CMS, dilepton	$172.50 \pm 1.52 \; (0.43 \pm 1.46)$	7 TeV [11]		
CMS, all jets	1 73.49 ± 1.41 (0.69 ± 1.23)	7 TeV [12]		
CMS, I+iets	$172.35 \pm 0.51 \ (0.16 \pm 0.48)$	8 TeV [13]		
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]		
CMS, all jets	172.32 ± 0.64 (0.25 ± 0.59)	8 TeV [13]		
CMS, single top	172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]		
CMS comb. (Sep 2015)	172.44 ± 0.48 (0.13 ± 0.47)	7+8 TeV [13]		
CMS, I+jets	$172.25 \pm 0.63 \ (0.08 \pm 0.62)$	13 TeV [15]		
CMS, dilepton	172.33 ± 0.70 (0.14 ± 0.69)	13 TeV [16]		
CMS, all iets	172.34 ± 0.73 (0.20 ± 0.70)	13 TeV [17]		
CMS, single top (*)	172.13 ± 0.77 (0.32 ± 0.70)	13 TeV [18]		
* Preliminary	[1] ATLAS-CONF-2013-102 [7] J-HEP 09 (2017) 118 [2] arXiv:1403.4427 [8] EFUC 79 (2019) 280 [3] EFUC 75 (2015) 330 [9] ATLAS-CONF-2019 046 [4] EFUC 75 (2015) 158 [10] J-HEP 12 (2012) 105 [5] ATLAS-CONF-2014-055 [11] EFUC 72 (2012) 105	[13] PRD 93 (2016) 072004 [14] EPJC 77 (2017) 354 [15] EPJC 78 (2018) 891 [16] EPJC 79 (2019) 368 [17] EPJC 79 (2019) 313		
	[6] PLB 761 (2016) 350 [12] EPJC 74 (2014) 2758	[18] CMS-PAS-TOP-19-009		
165 170 1	75 190	105		
		COL		
m _{top} [GeV]				

Why Top cross-section?

The total cross-section for any physics process at the hadron collider is convolution of parton-level cross-section and the Parton Distribution Functions (PDF):

$$\sigma(pp \to A + X) = \sum_{i,j} \int f_{q_i}(x_i, Q^2) f_{q_j}(x_j, Q^2) \sigma(q_i q_j \to A) dx_i dx_j$$

- Inclusive and differential measurements can be the crucial probes for SM & BSM physics
 - Test for the perturbative QCD at NNLO precision
 - Constraints on the PDFs further
 - Differential measurements are sensitive to top mass and polarization, α_S, PDF, etc.; furthermore, it can scrutinize different phase space regions
 - Determination of the SM parameters and measurement of the rare processes (tt+W/Z/γ, t+Z, etc.)
 - ➤ Constrain New physics: Anomalous couplings, direct searches (tt resonances, W'→tb, stop decays...)

HQL 2021, Warwick, UK, September 13-17, 2021

Decay of Top quark

- SM Br(t→W⁺b)=100%
- Final states determined through the decay of W[±] bosons from top and antitop quarks.
 - All jets: $t\overline{t} \rightarrow bW^+\overline{b}W^- \rightarrow b\overline{b}q\overline{q}'q\overline{q}'$
 - High branching ratio but large QCD background
 - ≥ 6 jets, 2 b-jets
 - **lepton+jets**: $t\overline{t} \rightarrow bW^+\overline{b}W^- \rightarrow b\overline{b}q\overline{q}'l^-\overline{v}$
 - Moderately high branching ratio but relatively low background
 - dilepton: $t\overline{t} \rightarrow bW^+\overline{b}W^- \rightarrow b\overline{b}l^+\nu l^-\overline{\nu}$
 - Low branching ratio but clean signal
- Similarly different final states for single top/electroweak top production
 - Dilepton: $tW^- \rightarrow bW^+W^- \rightarrow bl^+\nu l^-\overline{\nu}$
 - Semileptonic s-channel: $t\overline{b} \rightarrow bW^+\overline{b} \rightarrow b\overline{b}l^+\nu$

LHC Performance

CMS Integrated Luminosity Delivered, pp

 \sim After the glorious Run I, LHC have been operated at $\sqrt{s}=13$ TeV during 2015-18

- Both ATLAS and CMS have completed Inner detector upgrades during the Extended Year-End Technical Stop (EYETS) at the end of 2016 operation; average pileup events increased during 2017 and 2018 operations
- CR LHC performed exceedingly well during Run II and both the detectors have recorded ~150 fb⁻¹ of pp collision datasets at √s=13 TeV

Top pair Production Cross-section

Inclusive *tt* production cross-section

 $\frac{\Delta\sigma_{\rm inc}}{\sigma_{\rm inc}}$ [%]

 ± 2.9

 ± 2.0 ± 1.1

 ± 1.4

 ± 1.5

Lepton+jets channel analysis based on the full Run 2 dataset

3 different signal regions (SR) based on # of jets and b-jets

Profile likelihood fits (in separate signal regions) to extract the

W+jets, single top and multijet QCD are the dominant background

Electron/muon + missing E_T, m_T^W , ≥ 4 jets, ≥ 1 b-jet

5

op W+jets	Dominant systematics		
	Category	$rac{\Delta \sigma_{ ext{fid}}}{\sigma_{ ext{fid}}}$ [%]	$rac{\Delta \sigma_{ m in}}{\sigma_{ m inc}}$
	Signal modelling		
	$t\bar{t}$ shower/hadronisation	±2.8	±2.9
	$t\bar{t}$ scale variations	±1.4	±2.0
	Top p_{T} NNLO reweighting	±0.4	±1.1
	$t\bar{t} h_{damp}$	±1.5	±1.4
	<i>tī</i> PDF	±1.4	±1.5

2.5

 ΔR_{hii}^{avg}

Background modelling				
MC background modelling	±1.8	±2.0		
Multijet background	± 0.8	±0.6		
Detector modelling				
Jet reconstruction	±2.5	±2.6		
Luminosity	±1.7	±1.7		
Flavour tagging	±1.2	±1.3		
$E_{\rm T}^{\rm miss}$ + pile-up	±0.3	±0.3		
Muon reconstruction	±0.6	± 0.5		

Jet reconstruction	± 2.5	±2.6
Luminosity	±1.7	±1.7
Flavour tagging	±1.2	±1.3
$E_{\rm T}^{\rm miss}$ + pile-up	±0.3	±0.3
Muon reconstruction	±0.6	±0.5
Electron reconstruction	±0.7	±0.6
Simulation stat. uncertainty	±0.6	±0.7

	Simulation stat. uncertainty	±0.6	±0.7
<mark>0 ± 38 pb.</mark>	Total systematic uncertainty Data statistical uncertainty	$\pm 4.3 \\ \pm 0.05$	±4.6 ±0.05
	Total uncertainty	+4.3	+4.6

 $\sigma_{\text{inc}} = 830 \pm 0.4 \text{ (stat.)} \pm 36 \text{ (syst.)} \pm 14 \text{ (lumi.) pb} = 830$ Total uncertainty

 $\sigma_{\rm fid} = 110.7 \pm 0.05 \text{ (stat.)} {}^{+4.5}_{-4.3} \text{ (syst.)} \pm 1.9 \text{ (lumi.)} \text{ pb} = 110.7 \pm 4.8 \text{ pb.}$

inclusive and fiducial cross-sections:

Inclusive $t\overline{t}$ production cross-section

LHCTopWG

 σ

- Precise cross-section measurements are quite crucial
 - Scrutinizes the QCD predictions
 - > Possibility to extract several SM parameters e.g., α_s , m_{top} ...
- All inclusive cross-section measurements are consistent with the SM

HQL 2021, Warwick, UK, September 13-17, 2021

Differential σ ($t\overline{t}$) using boosted top quarks

Inclusive & Differential $\sigma(t\overline{t})$ in full kinematic range

Differential $\sigma(t\bar{t})$ using boosted top quarks

- ➢ Measurements performed on the all-hadronic and l+jets events using 35.9 fb⁻¹ 2016 dataset
 - Using 1/2 large-R jets (pT>400 GeV), b-tagging
- Dedicated fit in the side-band regions
 - > All hadronic channel: to extract the QCD normalization after NN separation
 - L+jets: to extract background normalization
- \succ Good agreement on normalized spectra; unfolded σ extracted at particle and parton level
- Dominant systematics: JES and b-tagging (All hadronic); PS, FSR (I+jets)

12

Single Top Cross-section Measurements

Differential tW Measurements (dilepton)

CMS-PAS-TOP-19-003

- Differential Measurements in dilepton events
 - \blacktriangleright e, μ , 1 jet and 1 b-jet, no loose jets to enhance S/B ratio
- Background MC estimated and subtracted
- $\blacktriangleright \ \sigma^{tW}$ is measured at the particle-level
- Dominant uncertainty from JES and JER

Observation of tW (e/ μ +jets)

15

JHEP (submitted in Sept'21); axXiv:2109.01706[hep-ex]

- > Differential Measurements in lepton+jets events using 36 fb⁻¹ 2016 dataset
 - \succ e/µ, 3 jets and ≥1 b-jet; event categorization based on # of jets
- Usage of boosted decision trees to separate from the tt background and binned likelihood fit of the BDT output distribution to extract the production cross-section
- \succ First observation of tW process (in e/µ+jets) with significance >5 standard deviation
 - > $\sigma^{tW} = 89 \pm 4$ (stat) ± 12 (syst) pb consistent with the SM
- Dominant uncertainty from JES, QCD multijet and W+jets normalization

Summary of Single Top cross-section at LHC

Inclusive and Differential tZq cross-section measurements

CMS-PAS-TOP-20-010

Measurement in tri-lepton channel using the full Run 2 dataset (138 fb⁻¹)

Results are in good agreement with the SM

 $R = 2.37 \stackrel{+0.56}{_{-0.42}} \text{(stat)} \stackrel{+0.27}{_{-0.13}} \text{(syst)}$

Observation of tZq process at Vs=13 TeV

JHEP 07 (2020) 124; arXiv: 2002.07546 [hep-ex]

Measurement in tri-lepton channel using the full Run 2 dataset (138 fb⁻¹) Events with 3 isolated leptons, 2-3 jets with ≥ 1 b-tagged jet L tZq signal strength extracted by ML fit for the NN discriminant output

 $p_{\tau}(Z)$ [GeV]

Summary & Conclusions

Ouring the LHC era, the statistics of top quark events in data has reached to a new level leading to the ATLAS/CMS measurements at an unprecedented precision

- Many new measurements have already been performed/completed with the full/partial Run 2 dataset
- Inclusive and differential Cross-section presented here involving strong and electroweak production of top quark(s)

 \diamond All the measurements are consistent with the SM predictions

With the enhanced LHC Run 2 statistics, rare SM processes like tW and tZq have been observed now by ATLAS and CMS

 \diamond More refined measurements would probe the BSM physics further

 Better understanding of detector effects and physics modelling would improve the systematics related to the top quark measurements

References

- ♦ LHCTopWG: <u>https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWG</u>
- ♦ ATLAS: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults</u>
- ♦ CMS: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP</u>