

Theory of Charged Lepton Flavour Violation Physics

Emilie Passemar*
Indiana University/Jefferson Laboratory

HQL2021

The XV International Conference on Heavy Quarks and Leptons University of Warwick, 13-17 September 2021

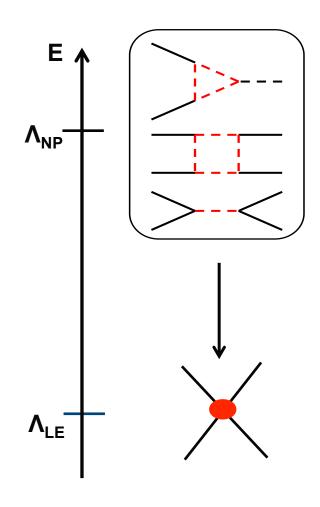
*Supported by NSF

Outline

- 1. Introduction and Motivation
- 2. Charged Lepton-Flavour Violation: Model discriminating power of muons and tau channels
- 3. Ex: Non-Standard LFV couplings of the Higgs boson
- 4. Conclusion and Outlook

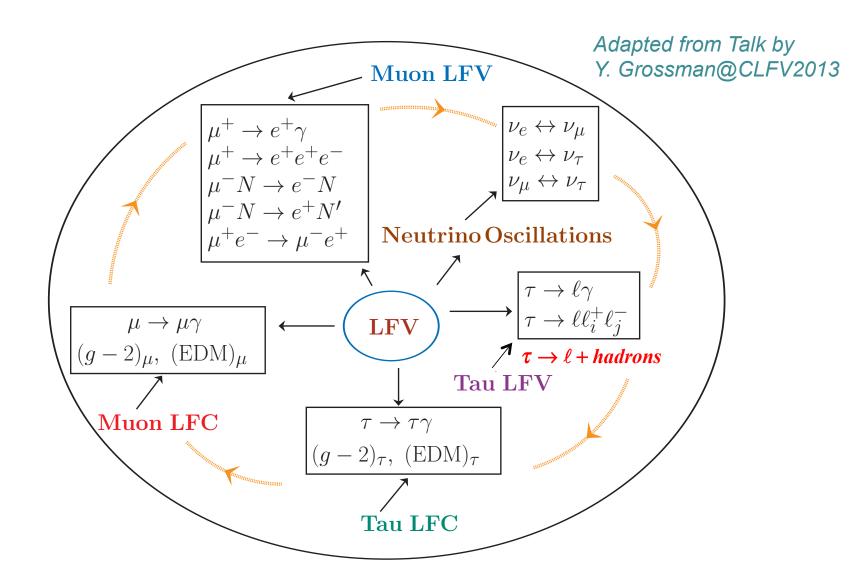
1. Introduction and Motivation

1.1 Why study charged leptons?



- In the quest of New Physics, can be sensitive to very high scale:
 - $\frac{s\overline{d}s\overline{d}}{\Lambda^2}$ \Rightarrow $\Lambda\gtrsim 10^5~\text{TeV}$ – Kaon physics:
 - Charged Leptons: $\frac{\mu \overline{e} f f}{\Lambda^2}$ $\Rightarrow \Lambda \gtrsim 10^4 \text{ TeV}$ $[\mu \rightarrow e\gamma]$
- At low energy: lots of experiments e.g., MEG, COMET, Mu2e, E-969, BaBar, Bellel-II, BESIII, LHCb, ATLAS, CMS huge improvements on measurements and bounds obtained and more expected
- In many cases no SM background: e.g., LFV, EDMs
- For some modes accurate calculations of hadronic uncertainties essential

1.2 The Program



2. Charged Lepton-Flavour Violation

2.1 Introduction and Motivation

- Neutrino oscillations are the first evidence for lepton flavour violation
- How about in the charged lepton sector?
- In the SM with massive neutrinos effective CLFV vertices are tiny due to GIM suppression — unobservably small rates!

E.g.:
$$\mu \to e\gamma$$

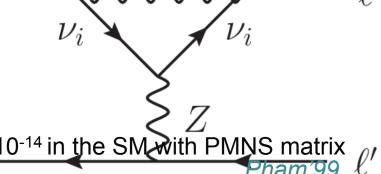
$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

L V_i ℓ $W^{7...}$

Petcov'77, Marciano & Sanda'77, Lee & Shrock'77...

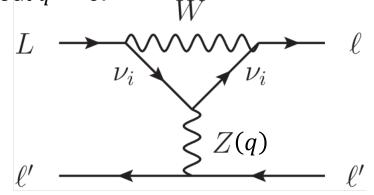
$$\left[Br(\tau\to\mu\gamma)<10^{-40}\right]$$

2.1 Introduction and Motiva



- Claim that $Br(\tau \to 3\mu)$ can be as large as 10⁻¹⁴ in the SM with PMNS matrix e^{\prime}
- Argument: Moving to PL generates a log mi divergence in the Z penguin. This involves an expansion about $q^2 = 0$:

$$f_0(x_i) + (q^2/M_W^2)f_1(x_i) + \cdots$$
$$f_0(x_i) \sim x_i \log x_i$$
$$f_1(x_i) \sim \log x_i$$



- 1. Non trivial gauge-dependence cancellation
- 2. q^2 is physically limited by $q^2 > 4m_{||}^2$ so the expansion cannot give correct $m_i \to 0$ behavior
- 3. We desire the $m_i \rightarrow 0$ limit to recover the SM without fine-tuning of ratios m_i/m_i

60 diag, to compute Use *method of regions*

Result:

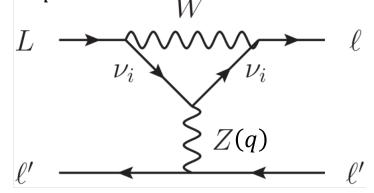
$$\Gamma(\tau \to 3\,\mu) \sim 10^{-55}$$

Blackstone, Fael, Passemar'20

2.1 Introduction and Motiva

- Claim that $Br(\tau \to 3\mu)$ can be as large as 10^{-14} in the SM with PMNS matrix
- Argument: Moving to PL generates a log mi divergence in the Z penguin. This involves an expansion about $q^2 = 0$:

$$f_0(x_i) + (q^2/M_W^2)f_1(x_i) + \cdots$$
$$f_0(x_i) \sim x_i \log x_i$$
$$f_1(x_i) \sim \log x_i$$



- 1. Non trivial gauge-dependence cancellation
- 2 a^2 is physically limited by $a^2 > 4m^2$ so the

 $\Gamma(L \to \ell \ell \ell) = \frac{G_F^2 \alpha^2 m_L^5}{(4\pi)^5} \left| \sum_{i=2}^{3} U_{Li}^* U_{\ell i} \frac{\Delta m_{i1}^2}{M_W^2} \right|$

$$\times \left[\log^2 x_L + 2 \log x_L - \frac{1}{6} \log x_\ell + \frac{19}{18} + \frac{17}{18} \pi^2 - \frac{1}{\sin^2 \theta_W} \left(\log x_L + \frac{11}{12} \right) + \frac{3}{8 \sin^4 \theta_W} \right]$$

2.1 Introduction and Motivation

- Neutrino oscillations are the first evidence for lepton flavour violation
- How about in the charged lepton sector?
- In the SM with massive neutrinos effective CLFV vertices are tiny due to GIM suppression — unobservably small rates!

E.g.:
$$\mu \to e\gamma$$

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

L V_i ℓ $W^{7...}$ $Y_{7...}$

Petcov'77, Marciano & Sanda'77, Lee & Shrock'77...

$$\left[Br\left(\tau\to\mu\gamma\right)<10^{-40}\right]$$

Extremely clean probe of beyond SM physics

2.1 Introduction and Motivation

In New Physics scenarios CLFV can reach observable levels in several channels

Talk by D. Hitlin	$ au o \mu \gamma \ au o \ell \ell \ell$			
SM + v mixing	Lee, Shrock, PRD 16 (1977) 1444 Cheng, Li, PRD 45 (1980) 1908	Undetectable		
SUSY Higgs Dedes, Ellis, Raidal, PLB 549 (2002) 159 Brignole, Rossi, PLB 566 (2003) 517			10-7	
SM + heavy Maj v _R	Cvetic, Dib, Kim, Kim, PRD66 (2002) 034008	10-9	10-10	
Non-universal Z'	Yue, Zhang, Liu, PLB 547 (2002) 252	10-9	10-8	
SUSY SO(10)	Masiero, Vempati, Vives, NPB 649 (2003) 189 Fukuyama, Kikuchi, Okada, PRD 68 (2003) 033012	10-8	10-10	
mSUGRA + Seesaw	Ellis, Gomez, Leontaris, Lola, Nanopoulos, EPJ C14 (2002) 319 Ellis, Hisano, Raidal, Shimizu, PRD 66 (2002) 115013	10-7	10-9	

- But the sensitivity of particular modes to CLFV couplings is model dependent
- Comparison in muonic and tauonic channels of branching ratios, conversion rates and spectra is model-diagnostic

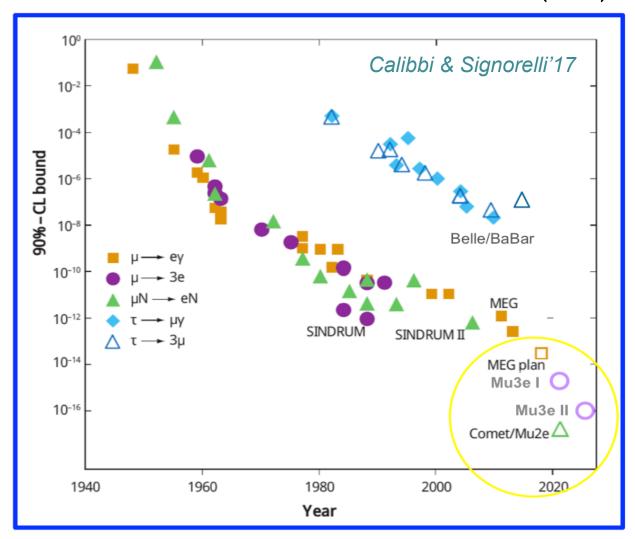
2.2 CLFV processes: muon decays

• Several processes: $\mu \to e\gamma$, $\mu \to e\overline{e}e$, $\mu(A,Z) \to e(A,Z)$

MEG'16 10° Original graph: Marciano-Mori, ARNPS 58, 315 (2009) $|BR(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}|$ Modified version 10-2 \rightarrow 6×10⁻¹⁴ Sindrum 10-4 90%-CL bound $BR(\mu \rightarrow eee) < 1.0 \times 10^{-12}$ 10-6 $10^{-15} - 10^{-16}$ 10-8 Ми3е 10-10 MEGA Sindrum II MEG 10-12 $BR_{\mu-e}^{Ti} < 4.3 \times 10^{-12}$ Sindrum Sindrum-II 10^{-14} $10^{-16} - 10^{-17}$ 2020 1960 1980 2000 1940 Mu2e/COMET Year Mu2e / COMET

2.2 CLFV processes: muon decays

• Several processes: $\mu \to e\gamma$, $\mu \to e\overline{e}e$, $\mu(A,Z) \to e(A,Z)$



MEG'16

$$BR(\mu \to e\gamma) < 4.2 \times 10^{-13}$$

$$\rightarrow$$
 6×10⁻¹⁴

Sindrum

$$BR(\mu \rightarrow eee) < 1.0 \times 10^{-12}$$

$$10^{-15} - 10^{-16}$$
 Mu3e

Sindrum II

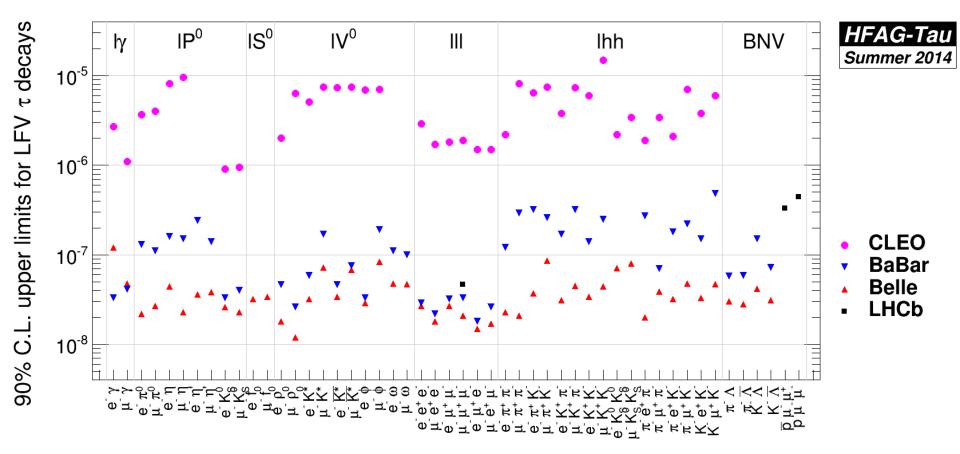
$$BR_{\mu-e}^{Ti} < 4.3 \times 10^{-12}$$

$$\longrightarrow 10^{-16} - 10^{-17}$$

Mu2e/COMET

2.2 CLFV processes: tau decays

• Several processes: $\tau \to \ell \gamma, \ \tau \to \ell_{\alpha} \overline{\ell}_{\beta} \ell_{\beta}, \ \tau \to \ell Y$ $P, S, V, P\overline{P}, ...$



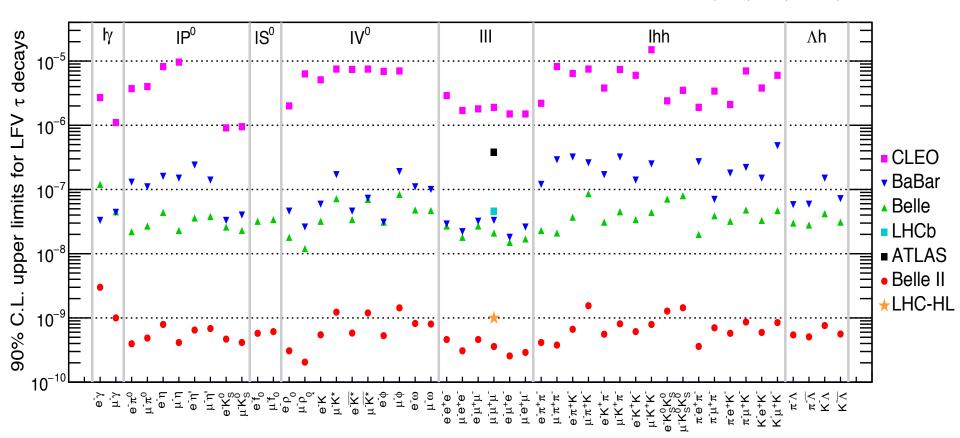
48 LFV modes studied at Belle and BaBar

2.2 CLFV processes: tau decays

Belle II Physics Book'18
HL-LHC&HE-LHC'18

• Several processes: $au o \ell \gamma, \ au o \ell_{\alpha} \overline{\ell}_{\beta} \ell_{\beta}, \ au o \ell Y_{\kappa}$

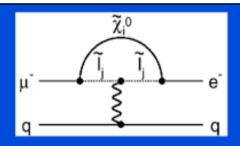
 $\nwarrow_{P, S, V, P\overline{P}, \dots}$



Expected sensitivity 10-9 or better at LHCb, Belle II, HL-LHC?

A multitude of models...

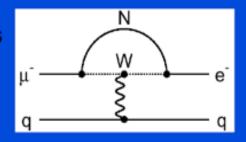
Supersymmetry
Predictions at 10⁻¹⁵

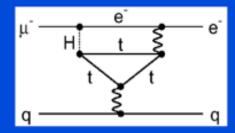


Compositeness $\Lambda_c = 3000 \text{ TeV}$

Heavy Neutrinos

$$\left|U_{\mu N}^{*}U_{e N}\right|^{2}=8\times10^{-13}$$

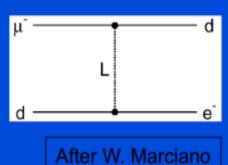


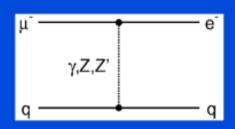


Second Higgs doublet $g_{H_{ue}} = 10^{-4} \times g_{H_{uu}}$

Leptoquarks

$$M_L$$
 = $3000\sqrt{\lambda_{\mu d}\lambda_{ed}}$ TeV/c²





Heavy Z', Anomalous Z coupling

$$M_{Z'} = 3000 \text{ TeV/c}^2$$

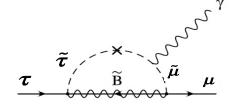
B(Z \rightarrow \mu e) < 10⁻¹⁷

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Build all D>5 LFV operators:
 - Dipole:

$$\mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$$

e.g.



See e.g.
Black, Han, He, Sher'02
Brignole & Rossi'04
Dassinger, Feldmann, Mannel,
Turczyk'07
Matsuzaki & Sanda'08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov & Zhuridov'14
Cirigliano, Celis, E.P.'14

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Build all D>5 LFV operators:
 - ightharpoonup Dipole: $\mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$

See e.g.
Black, Han, He, Sher'02
Brignole & Rossi'04
Dassinger, Feldmann, Mannel,
Turczyk'07
Matsuzaki & Sanda'08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov & Zhuridov'14
Cirigliano, Celis, E.P.'14

Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):

$$\mathcal{L}_{eff}^{S,V} \supset -\frac{C_{S,V}}{\Lambda^2} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q \qquad \text{e.g.} \qquad \tau \qquad \varphi \equiv h^0, H^0, A^0 \qquad \varphi \equiv h^0, H^0, H^0 \qquad \varphi \equiv h^0, H^0, H^0 \qquad \varphi \equiv h^0, H^0 \qquad \varphi \equiv$$

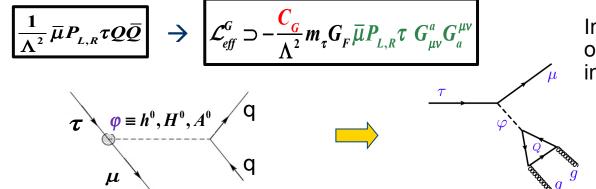
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Build all D>5 LFV operators:
 - ightharpoonup Dipole: $\mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$
 - Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):

See e.g.
Black, Han, He, Sher'02
Brignole & Rossi'04
Dassinger, Feldmann, Mannel,
Turczyk'07
Matsuzaki & Sanda'08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov & Zhuridov'14
Cirigliano, Celis, E.P.'14

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$$

➤ Integrating out heavy quarks generates *gluonic operator*



Importance of this operator emphasized in *Petrov & Zhuridov'14*

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Build all D>5 LFV operators:
 - ightharpoonup Dipole: $\mathcal{L}_{eff}^{D} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu\nu} P_{L,R} \tau F_{\mu\nu}$
 - ➤ Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):
 - 4 leptons (Scalar, Pseudo-scalar, Vector, Axial-vector):

e.g.
$$\tau Y_{\Delta} \mu$$

See e.g.
Black, Han, He, Sher'02
Brignole & Rossi'04
Dassinger, Feldmann, Mannel,
Turczyk'07
Matsuzaki & Sanda'08
Giffels et al.'08
Crivellin, Najjari, Rosiek'13
Petrov & Zhuridov'14
Cirigliano, Celis, E.P.'14

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$$

$$\mathcal{L}_{eff}^{4\ell} \supset -\frac{C_{S,V}^{4\ell}}{\Lambda^2} \overline{\mu} \Gamma P_{L,R} \tau \overline{\mu} \Gamma P_{L,R} \mu$$

 $\Gamma \equiv 1 , \gamma^{\mu}$

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{C^{(5)}}{\Lambda} O^{(5)} + \sum_{i} \frac{C_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \dots$$

- Build all D>5 LFV operators:
 - ightharpoonup Dipole: $\left| \mathcal{L}^{D}_{eff} \supset -\frac{C_{D}}{\Lambda^{2}} m_{\tau} \overline{\mu} \sigma^{\mu \nu} P_{L,R} \tau F_{\mu \nu} \right|$
 - Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector):
 - ➤ Lepton-gluon (Scalar, Pseudo-scalar):
- $\mathcal{L}_{eff}^{G} \supset -\frac{C_{G}}{\Lambda^{2}} m_{\tau} G_{F} \overline{\mu} P_{L,R} \tau G_{\mu\nu}^{a} G_{a}^{\mu\nu}$
 - > 4 leptons (Scalar, Pseudo-scalar, Vector, $\left|\mathcal{L}_{eff}^{4\ell} \supset -\frac{C_{S,V}^{4\ell}}{\Lambda^2} \bar{\mu} \Gamma P_{L,R} \tau \bar{\mu} \Gamma P_{L,R} \mu\right|$ Axial-vector):

$$\mathcal{L}_{eff}^{4\ell} \supset -\frac{C_{S,V}^{4\ell}}{\Lambda^2} \overline{\mu} \Gamma P_{L,R} \tau \overline{\mu} \Gamma P_{L,R} \mu$$

Each UV model generates a *specific pattern* of them

See e.g. Black, Han, He, Sher'02 Brignole & Rossi'04 Dassinger, Feldmann, Mannel, Turczyk'07 Matsuzaki & Sanda'08 Giffels et al. '08 Crivellin, Najjari, Rosiek'13 Petrov & Zhuridov'14 Cirigliano, Celis, E.P.'14

$$\mathcal{L}_{eff}^{S} \supset -\frac{C_{S,V}}{\Lambda^{2}} m_{\tau} m_{q} G_{F} \overline{\mu} \Gamma P_{L,R} \tau \overline{q} \Gamma q$$

 $\Gamma \equiv 1, \gamma^{\mu}$

2.4 Model discriminating power of muon processes

Discriminating power: µLFV matrix Summary table: Ciriglian

Cirigliano@Beauty2014

	$\mu \to 3e$	$\mu \to e \gamma$	$\mu \to e$ conversion
$O_{S,V}^{4\ell}$	✓	_	_
O_D	✓	✓	✓
O_V^q	_	_	✓
O_S^q	_	_	✓

- The notion of "best probe" (process with largest decay rate) is model dependent
- If observed, compare rate of processes key handle on *relative strength* between operators and hence on the *underlying mechanism*

2.4 Model discriminating power of muon processes Discriminating power: µLFV matrix

Cirigliano@Beauty2014

Summary table:

	$\mu \to 3e$	$\mu \to e \gamma$	$\mu \to e$ conversion
$O_{S,V}^{4\ell}$	1	-	_
O_D	\	1)	✓
O_V^q	_	_	✓
O_S^q	_	_	✓

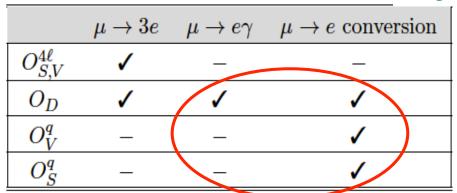
• $\mu \to e \gamma$ vs. $\mu \to 3e$ relative strength between *dipole* and *4L* operators

$$\frac{\Gamma_{\mu \to 3e}}{\Gamma_{\mu \to e\gamma}} = \frac{\alpha}{4\pi} I_{\text{PS}} \left(1 + \sum_{i} \frac{c_{i}^{(\text{contact})}}{c^{(\text{dipole})}} \right)$$

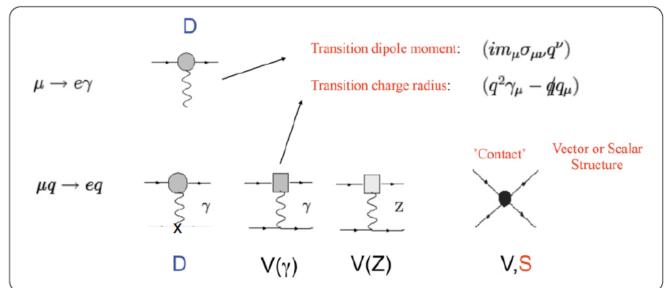
2.4 Model discriminating power: ULFV matrix

Cirigliano@Beauty2014

Summary table:



• $\mu \rightarrow e \gamma$ vs. $\mu \rightarrow e$ conversion \Longrightarrow relative strength between dipole and quark operators

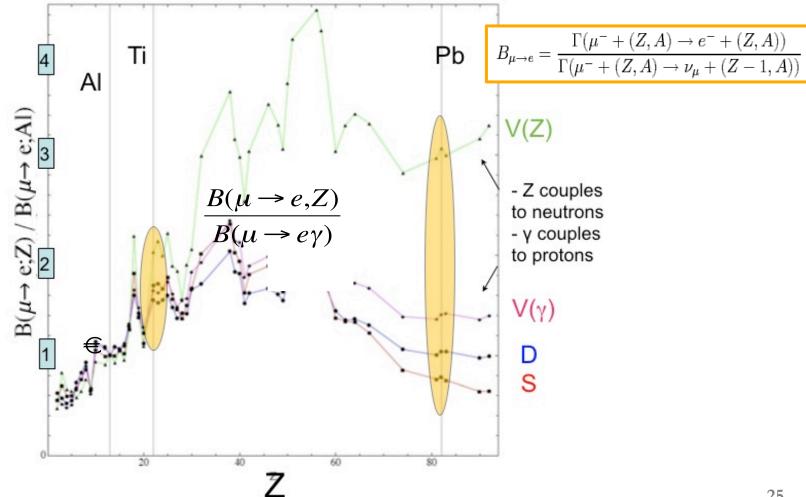


BR for $\mu \rightarrow$ e conversion

$\mu \rightarrow e \ vs \ \mu \rightarrow e \gamma$

For $\mu \rightarrow e$ conversion, target dependence of the amplitude is different for V,D or S models

Cirigliano, Kitano, Okada, Tuzon'09



2.5 Model discriminating power of Tau processes

Summary table:

Celis, Cirigliano, E.P.'14

	$ au o 3\mu$	$ au o \mu \gamma$	$ au o \mu \pi^+ \pi^-$	$ au o \mu K ar{K}$	$ au o \mu\pi$	$ au o \mu \eta^{(\prime)}$
${ m O_{S,V}^{4\ell}}$	✓	_	_	_	_	_
O_D	✓	✓	✓	✓	_	_
$\mathrm{O_{V}^{q}}$	_	_	✓ (I=1)	\checkmark (I=0,1)	_	_
O_S^q	_	_	✓ (I=0)		_	_
O_{GG}	_	_	✓	✓	_	_
$\mathrm{O}_{\mathrm{A}}^{\mathrm{q}}$	_	_	_	_	✓ (I=1)	✓ (I=0)
$O_{\mathbf{P}}^{\mathbf{q}}$	_	_	_	_	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	_	_	_	_	_	✓

- In addition to leptonic and radiative decays, hadronic decays are very important sensitive to large number of operators!
- But need reliable determinations of the hadronic part: form factors and decay constants (e.g. f_n, f_n,)

2.5 Model discriminating power of Tau processes

Summary table:

Celis, Cirigliano, E.P.'14

	$ au o 3\mu$	$ au o \mu \gamma$	$ au o \mu \pi^+ \pi^-$	$ au o \mu K \bar{K}$	$ au o \mu\pi$	$ au o \mu \eta^{(\prime)}$
${ m O_{S,V}^{4\ell}}$	✓	_	_	_	_	_
O_D	✓	✓	✓	✓	_	_
$\mathrm{O_{V}^{q}}$	_	_	✓ (I=1)	\checkmark (I=0,1)	_	_
O_{S}^{q}	_	_	✓ (I=0)	\checkmark (I=0,1)	_	_
O_{GG}	_	_	✓	✓	_	_
$\mathrm{O}_{\mathrm{A}}^{\mathrm{q}}$	_	_	_	_	✓ (I=1)	✓ (I=0)
O_{P}^{q}	_	_	_	_	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	_	_	_	_	_	✓

- Form factors for $\tau \to \mu(e)\pi\pi$ determined using *dispersive techniques*
- Hadronic part:

$$\boldsymbol{H}_{\mu} = \left\langle \pi \pi \middle| \left(\boldsymbol{V}_{\mu} - \boldsymbol{A}_{\mu} \right) e^{i\boldsymbol{L}_{QCD}} \middle| \boldsymbol{0} \right\rangle = \left(\boldsymbol{Lorentz} \text{ struct.} \right)_{\mu}^{i} \boldsymbol{F}_{i} \left(\boldsymbol{s} \right) \quad \boldsymbol{s} = \left(\boldsymbol{p}_{\pi^{+}} + \boldsymbol{p}_{\pi^{-}} \right)^{2}$$

 $n=\pi\pi,KK$

Donoghue, Gasser, Leutwyler'90

with Moussallam'99 $s = \left(p_{\pi^{+}} + p_{\pi^{-}}\right)^{2}$ Daub et al'13
Celis, Cirigliano, E.P.'14

• 2-channel unitarity condition is solved with I=0 S-wave $\pi\pi$ and KK scattering data as input

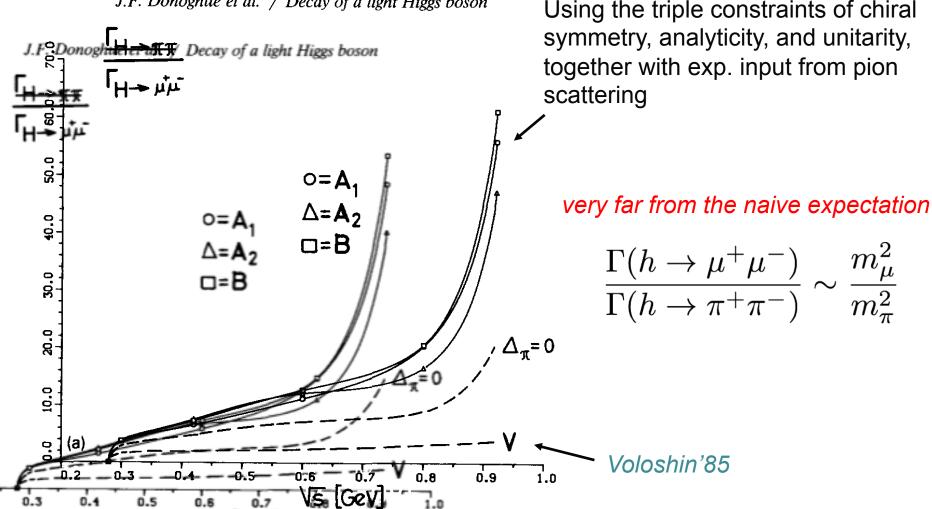
$$\operatorname{Im} F_n(s) = \sum_{m=1}^2 T_{nm}^*(s) \sigma_m(s) F_m(s)$$

How to describe the form factors?

Donoghue, Gasser, Leutwyler'90

[GeV]

J.F. Donoghue et al. / Decay of a light Higgs boson



Unitarity

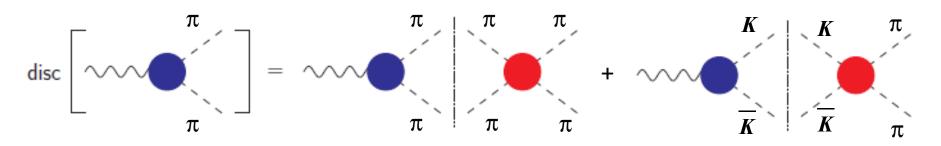
Celis, Cirigliano, E.P.'14

• Elastic approximation breaks down for the $\pi\pi$ S-wave at KK threshold due to the strong inelastic coupling involved in the region of $f_0(980)$

Need to solve a Coupled Channel Mushkhelishvili-Omnès problem

Donoghue, Gasser, Leutwyler'90 Osset & Oller'98 Moussallam'99

Unitarity the discontinuity of the form factor is known



$$\operatorname{Im} F_n(s) = \sum_{m=1}^2 T_{nm}^*(s) \sigma_m(s) F_m(s)$$

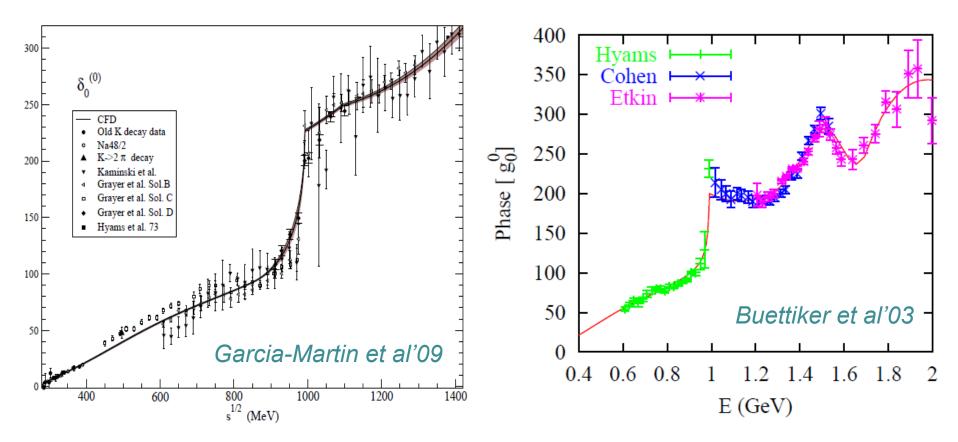
 $n=\pi\pi, K\overline{K}$

Scattering matrix:

$$\left(egin{aligned} \pi\pi \rightarrow \pi\pi, & \pi\pi \rightarrow K\overline{K} \ K\overline{K} \rightarrow \pi\pi, & K\overline{K} \rightarrow K\overline{K} \end{aligned}
ight)$$

Inputs for the coupled channel analysis

• Inputs : $\pi\pi o \pi\pi$, $K\overline{K}$



- A large number of theoretical analyses *Descotes-Genon et al'01, Kaminsky et al'01, Buettiker et al'03, Garcia-Martin et al'09, Colangelo et al.'11* and all agree
- 3 inputs: $\delta_{\pi}(s)$, $\delta_{K}(s)$, η from *B. Moussallam* \Longrightarrow reconstruct *T* matrix

30

General solution to Mushkhelishvili-Omnès problem:

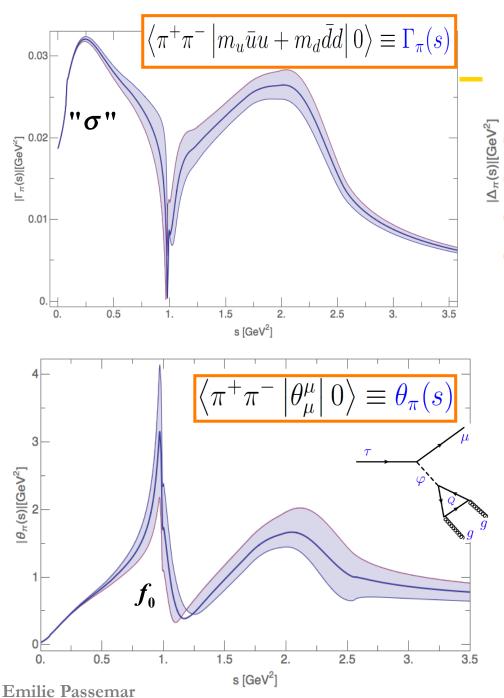
$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_K(s) \end{pmatrix} = \begin{pmatrix} C_1(s) & D_1(s) \\ C_2(s) & D_2(s) \end{pmatrix} \begin{pmatrix} P_F(s) \\ Q_F(s) \end{pmatrix}$$

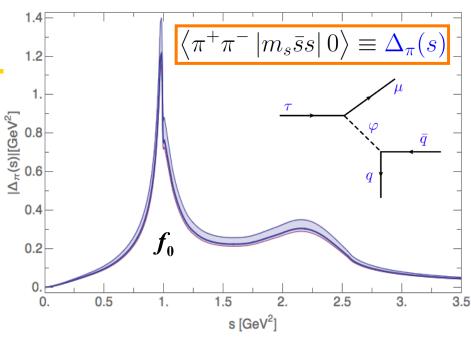
Canonical solution falling as 1/s for large s (obey unsubtracted dispersion relations)

Polynomial determined from a matching to ChPT + lattice

 Canonical solution found by solving dispersive integral equations iteratively starting with *Omnès functions* that are solutions of the one-channel unitary condition

$$\Omega_{\pi,K}(s) \equiv \exp\left[\frac{s}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{dt}{t} \frac{\delta_{\pi,K}(t)}{(t-s)}\right]$$





Celis, Cirigliano, E.P.'14

• Uncertainties:

- Varying s_{cut} (1.4 GeV² 1.8 GeV²)
- Varying the matching conditions
- T matrix inputs

See also Daub et al.'13

2.5 Model discriminating power of Tau processes

Summary table:

Celis, Cirigliano, E.P.'14

	$ au o 3\mu$	$ au o \mu \gamma$	$ au o \mu \pi^+ \pi^-$	$ au o \mu K \bar{K}$	$ au o \mu\pi$	$ au o \mu \eta^{(\prime)}$
${ m O_{S,V}^{4\ell}}$	✓	_	_	_	_	_
O_D	✓	✓	✓	✓	_	_
$\mathrm{O_{V}^{q}}$	_	_	✓ (I=1)	\checkmark (I=0,1)	_	_
O_{S}^{q}	_	_	✓ (I=0)	\checkmark (I=0,1)	_	_
O_{GG}	_	_	✓	✓	_	_
$\mathrm{O}_{\mathrm{A}}^{\mathrm{q}}$	_	_	_	_	✓ (I=1)	✓ (I=0)
$O_{\mathrm{P}}^{\mathrm{q}}$	_	_	_	_	✓ (I=1)	✓ (I=0)
$O_{G\widetilde{G}}$	_	_	_	_	_	✓

- The notion of "best probe" (process with largest decay rate) is model dependent
- If observed, compare rate of processes \implies key handle on *relative strength* between operators and hence on the *underlying mechanism*

2.5 Model discriminating power of Tau processes

Two handles:

Celis, Cirigliano, E.P.'14

Spectra for > 2 bodies in the final state:

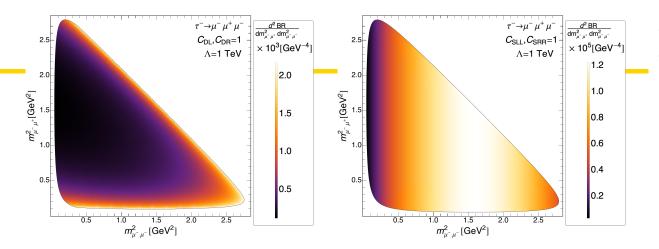
$$\frac{dBR\left(\tau \to \mu \pi^+ \pi^-\right)}{d\sqrt{s}} \quad \text{and} \quad dR_{\pi^+ \pi^-} \equiv \frac{1}{\Gamma\left(\tau \to \mu \gamma\right)} \frac{d\Gamma\left(\tau \to \mu \pi^+ \pi^-\right)}{d\sqrt{s}}$$

2.6 Model discriminating of BRs

Studies in specific models

Buras et al.'10

ratio	LHT	MSSM (dipole)	MSSM (Higgs)	SM4
$\frac{\operatorname{Br}(\mu^- \to e^- e^+ e^-)}{\operatorname{Br}(\mu \to e\gamma)}$	0.021	$\sim 6 \cdot 10^{-3}$	$\sim 6 \cdot 10^{-3}$	0.06 2.2
$\frac{\operatorname{Br}(\tau^- \to e^- e^+ e^-)}{\operatorname{Br}(\tau \to e\gamma)}$	$0.04.\dots0.4$	$\sim 1 \cdot 10^{-2}$	$\sim 1 \cdot 10^{-2}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\frac{\operatorname{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\operatorname{Br}(\tau \to \mu \gamma)}$	0.040.4	$\sim 2 \cdot 10^{-3}$	0.060.1	$\boxed{0.06\dots2.2}$
$\frac{\operatorname{Br}(\tau^- \to e^- \mu^+ \mu^-)}{\operatorname{Br}(\tau \to e\gamma)}$	0.040.3	$\sim 2 \cdot 10^{-3}$	0.020.04	0.031.3
$\frac{\operatorname{Br}(\tau^- \to \mu^- e^+ e^-)}{\operatorname{Br}(\tau \to \mu \gamma)}$	0.040.3	$\sim 1 \cdot 10^{-2}$	$\sim 1 \cdot 10^{-2}$	0.04 1.4
$\frac{\operatorname{Br}(\tau^- \to e^- e^+ e^-)}{\operatorname{Br}(\tau^- \to e^- \mu^+ \mu^-)}$	0.82	~ 5	0.30.5	$1.5\dots 2.3$
$\frac{\operatorname{Br}(\tau^- \to \mu^- \mu^+ \mu^-)}{\operatorname{Br}(\tau^- \to \mu^- e^+ e^-)}$	0.71.6	~ 0.2	510	$1.4 \dots 1.7$
$\frac{\mathrm{R}(\mu\mathrm{Ti}{\to}e\mathrm{Ti})}{\mathrm{Br}(\mu{\to}e\gamma)}$	$10^{-3}\dots10^2$	$\sim 5 \cdot 10^{-3}$	0.080.15	$10^{-12}\dots26$



Dassinger, Feldman, Mannel, Turczyk' 07 Celis, Cirigliano, E.P.'14

Figure 3: Dalitz plot for $\tau^- \to \mu^- \mu^+ \mu^-$ decays when all operators are assumed to vanish with the exception of $C_{DL,DR} = 1$ (left) and $C_{SLL,SRR} = 1$ (right), taking $\Lambda = 1$ TeV in both cases. Colors denote the density for $d^2BR/(dm_{\mu^-\mu^+}^2dm_{\mu^-\mu^-}^2)$, small values being represented by darker colors and large values in lighter ones. Here $m_{\mu^-\mu^+}^2$ represents m_{12}^2 or m_{23}^2 , defined in Sec. 3.1.

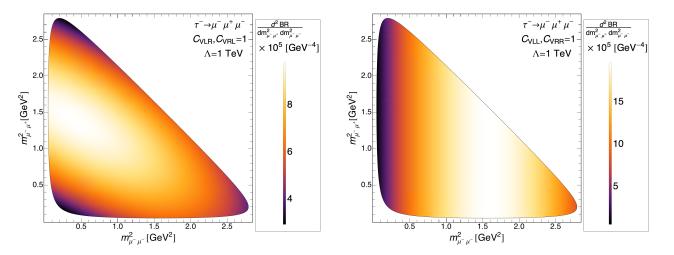
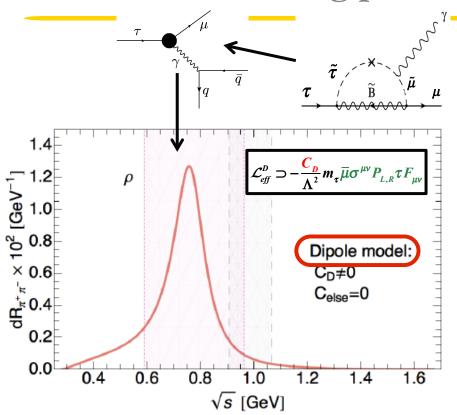


Figure 4: Dalitz plot for $\tau^- \to \mu^- \mu^+ \mu^-$ decays when all operators are assumed to vanish with the exception of $C_{VRL,VLR} = 1$ (left) and $C_{VLL,VRR} = 1$ (right), taking $\Lambda = 1$ TeV in both cases. Colors are defined as in Fig. 3.

Angular analysis with polarized taus

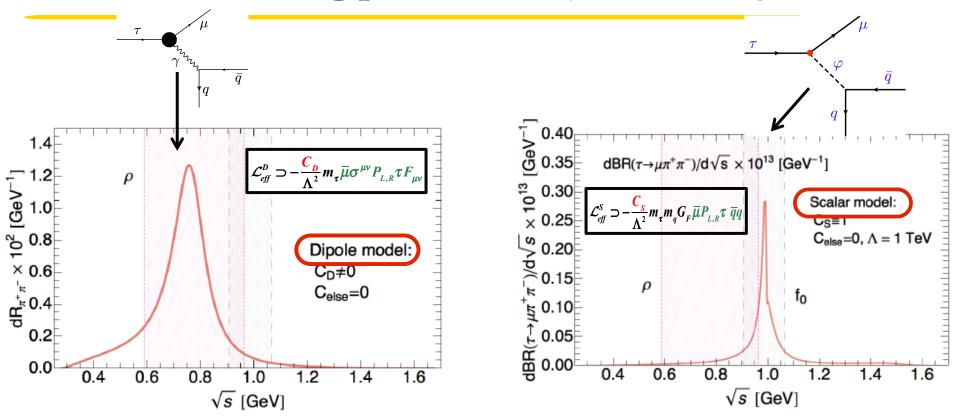
Dassinger, Feldman, Mannel, Turczyk' 07

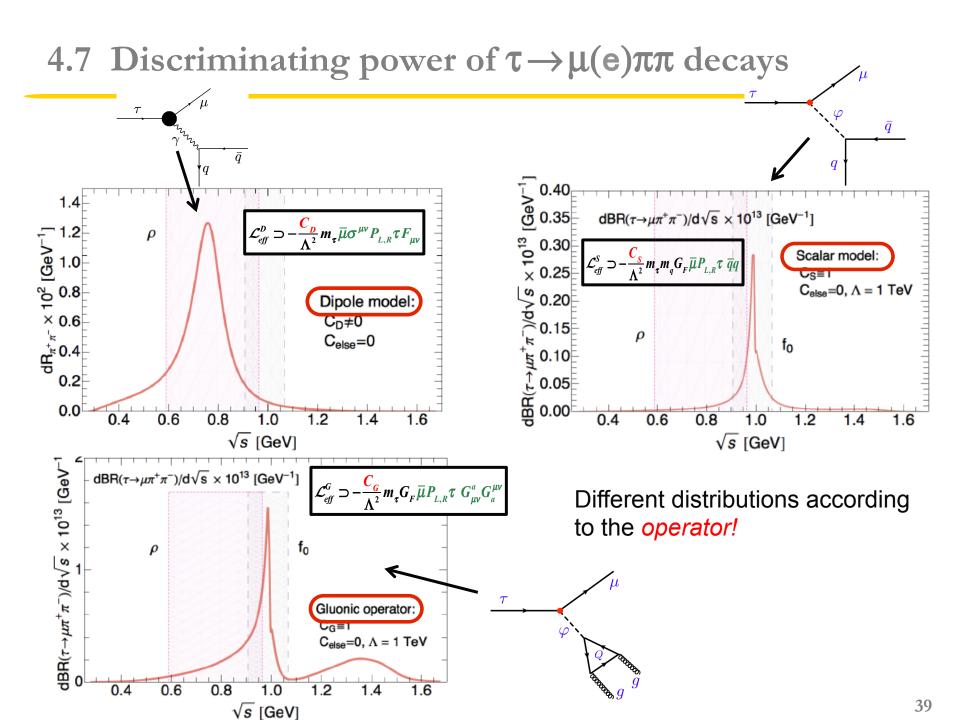
4.7 Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays



Celis, Cirigliano, E.P.'14

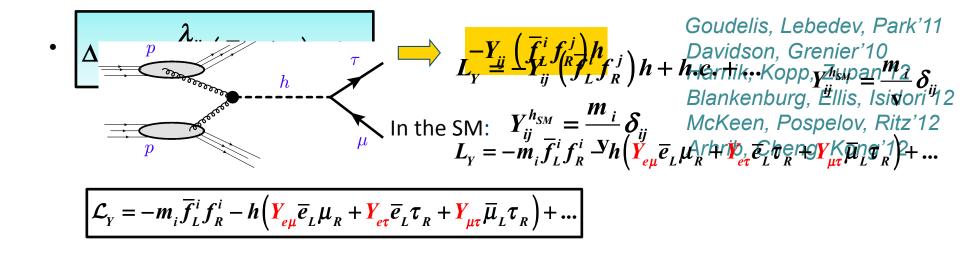
4.7 Discriminating power of $\tau \rightarrow \mu(e)\pi\pi$ decays





3. Ex: Charged Lepton-Flavour Violation and Higgs Physics

3.1 Non standard LFV Higgs coupling



Arise in several models Cheng, Sher'97, Goudelis, Lebedev, Park'11 Davidson, Grenier'10

Cheng, Sher'97

Order of magnitude expected No tuning:

$$|Y_{\tau\mu}Y_{\mu\tau}| \lesssim \frac{m_\mu m_\tau}{v^2}$$

• In concrete models, in general further parametrically suppressed

3.1 Non standard LFV Higgs coupling

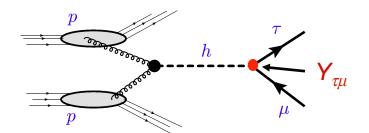
$$\bullet \quad \boxed{\Delta \mathcal{L}_{Y} = -\frac{\lambda_{ij}}{\Lambda^{2}} \left(\overline{f}_{L}^{i} f_{R}^{j} H \right) H^{\dagger} H}$$

$$-Y_{ij}\left(\overline{f}_L^if_R^j\right)h$$

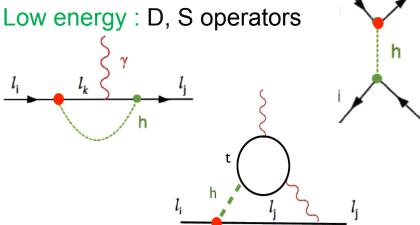
In the SM: $Y_{ij}^{h_{SM}} = \frac{m_i}{N} \delta_{ij}$

Goudelis, Lebedev, Park'11 Davidson, Grenier'10 Harnick, Koop, Zupan'12 Blankenburg, Ellis, Isidori'12 McKeen, Pospelov, Ritz'12 Arhrib, Cheng, Kong'12

High energy: LHC



Hadronic part treated with perturbative QCD



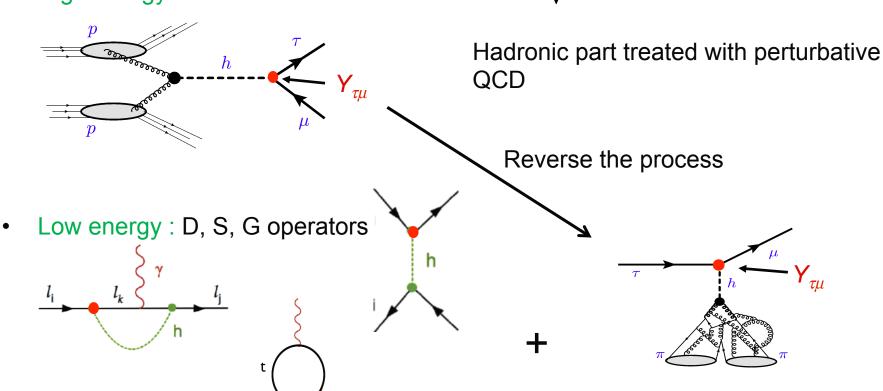
3.1 Non standard LFV Higgs coupling

$$\Delta \mathcal{L}_{Y} = -\frac{\lambda_{ij}}{\Lambda^{2}} \left(\overline{f}_{L}^{i} f_{R}^{j} H \right) H^{\dagger} H \qquad \Longrightarrow \qquad -Y_{ij} \left(\overline{f}_{L}^{i} f_{R}^{j} \right) h$$

High energy : LHC

In the SM:
$$Y_{ij}^{h_{SM}} = \frac{m_i}{v} \delta_{ij}$$

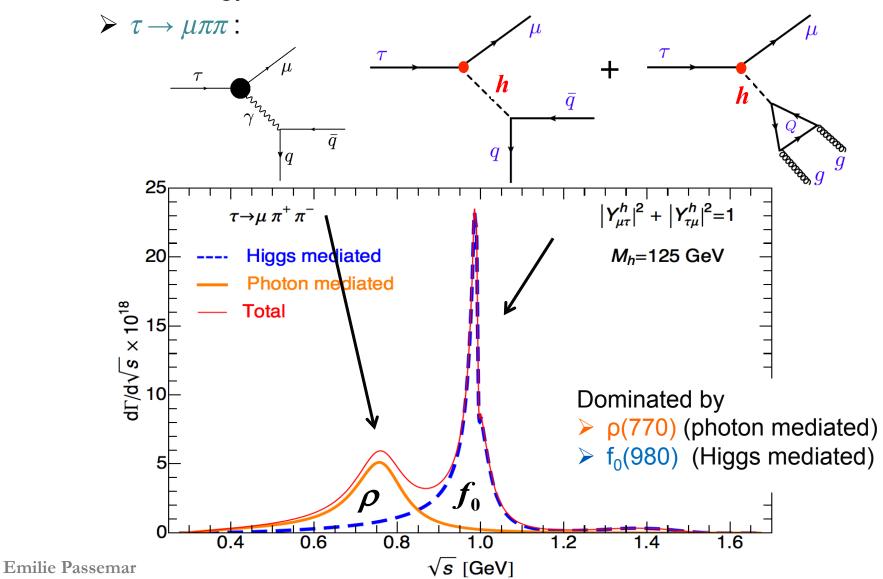
Goudelis, Lebedev, Park'11
Davidson, Grenier'10
Harnick, Koop, Zupan'12
Blankenburg, Ellis, Isidori'12
McKeen, Pospelov, Ritz'12
Arhrib, Cheng, Kong'12



Hadronic part treated with non-perturbative QCD 43

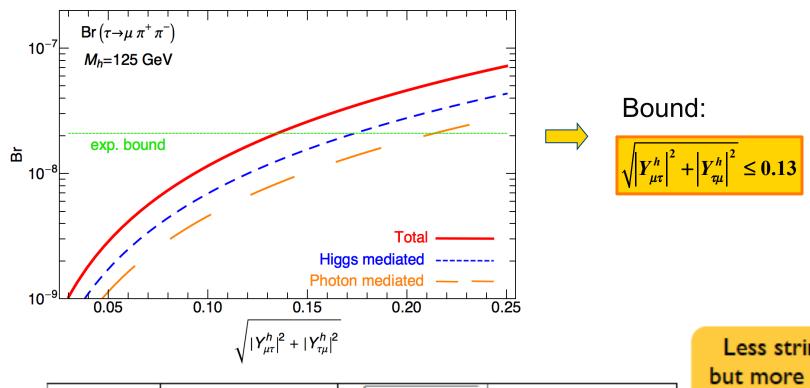
3.2 Constraints in the tu sector

At low energy



44

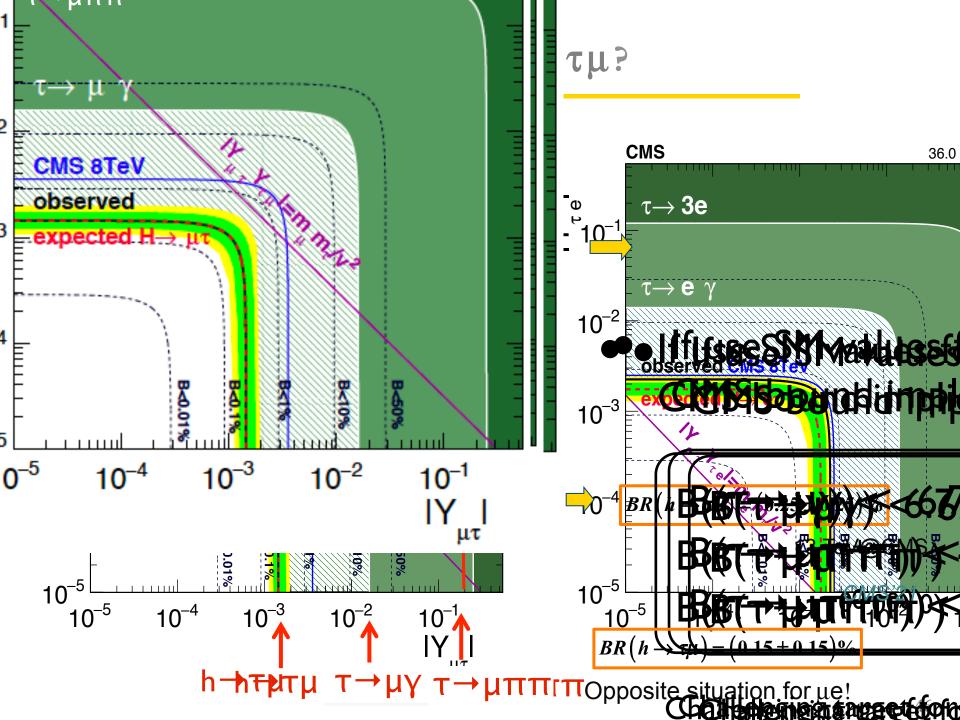
3.2 Constraints in the tu sector



Process	$(\mathrm{BR}\times 10^8)~90\%~\mathrm{CL}$	$\sqrt{ Y^h_{\mu au} ^2+ Y^h_{ au\mu} ^2}$	Operator(s)
$\tau \rightarrow \mu \gamma$	< 4.4 [88]	< 0.016	Dipole
$\tau \rightarrow \mu \mu \mu$	< 2.1 [89]	< 0.24	Dipole
$\tau \rightarrow \mu \pi^+ \pi^-$	< 2.1 [86]	< 0.13	Scalar, Gluon, Dipole
$ au ightarrow \mu ho$	< 1.2 [85]	< 0.13	Scalar, Gluon, Dipole
$\tau \rightarrow \mu \pi^0 \pi^0$	$< 1.4 \times 10^3$ [87]	< 6.3	Scalar, Gluon

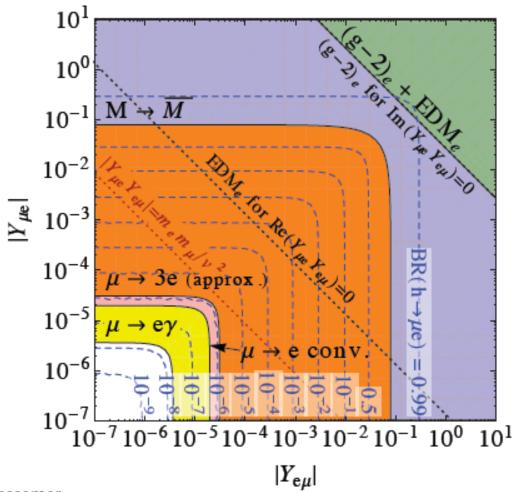
Less stringent but more robust handle on LFV Higgs couplings

45



3.3 Constraints in the µe sector

Constraints from Higgs decay (LHC) vs. low energy LFV and LFC observables



Harnik, Kopp, Zupan'12

 Best constraints coming from low

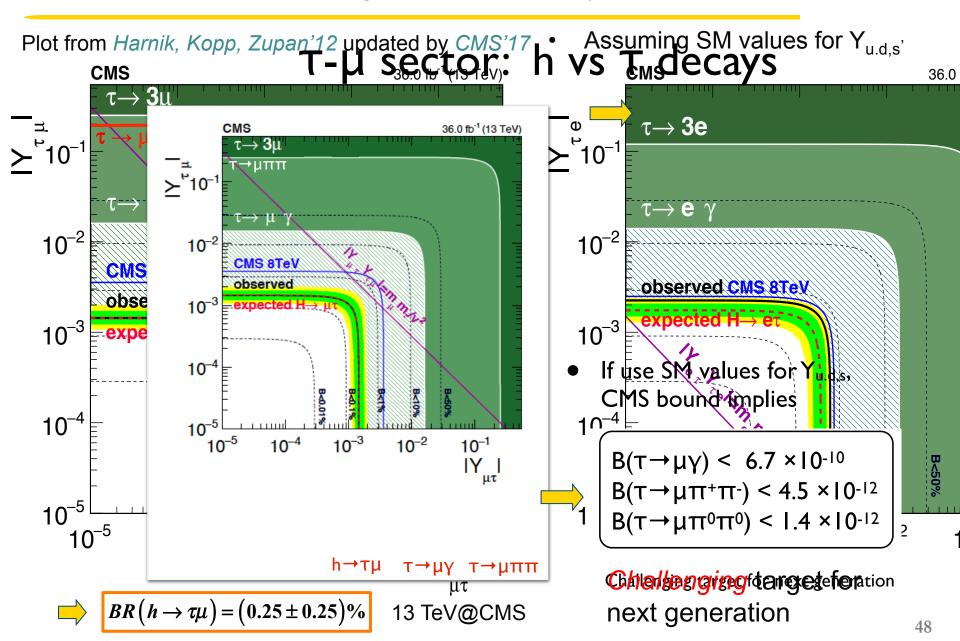
energy:
$$\mu \rightarrow e \gamma$$

MEG'13

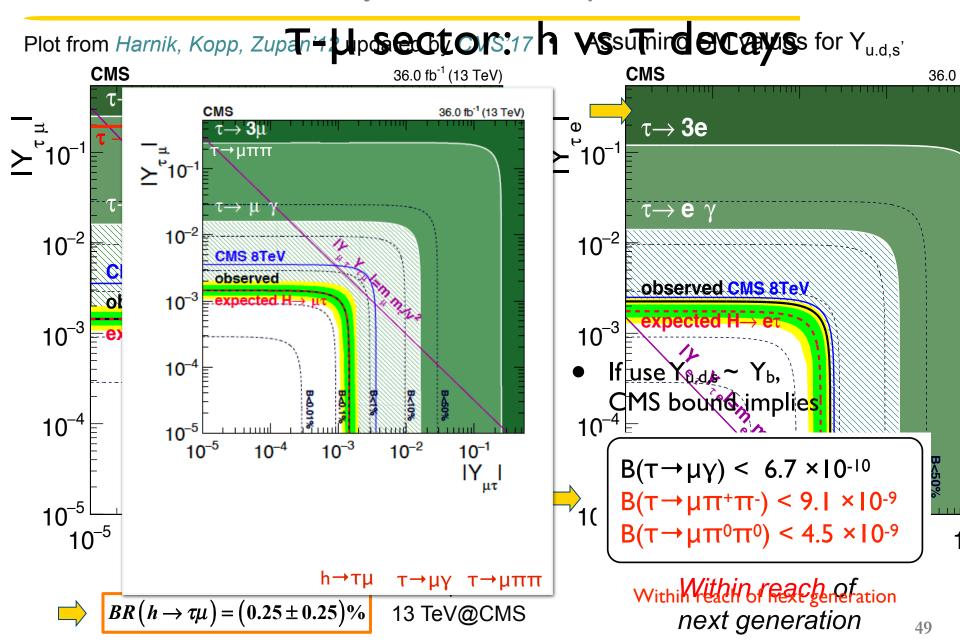
$$BR(\mu \rightarrow e\gamma) < 5.7 \ 10^{-13}$$

$$\square \rangle BR(h \to \mu e) < 10^{-7}$$

3.3 Hint of New Physics in $h \rightarrow \tau \mu$?



3.3 Hint of New Physics in $h \rightarrow \tau \mu$?



4. Conclusion and Outlook

Summary

- Direct searches for new physics at the TeV-scale at LHC by ATLAS and CMS penergy frontier
- Probing new physics orders of magnitude beyond that scale and helping to decipher possible TeV-scale new physics requires to work hard on the intensity and precision frontiers
- Charged leptons offer an important spectrum of possibilities:
 - ➤ LFV measurements have SM-free signal
 - Current experiments and mature proposals promise orders of magnitude sensitivity improvements
 - In addition to leptonic and radiative decays \implies hadronic decays important, e.g. $\tau \to \mu(e)\pi\pi$, $\mu N \to eN$
 - New physics models usually strongly correlate these sectors

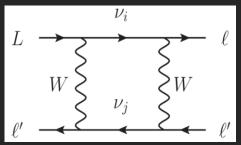
Summary

- Direct searches for new physics at the TeV-scale at LHC by ATLAS and CMS penergy frontier
- Probing new physics orders of magnitude beyond that scale and helping to decipher possible TeV-scale new physics requires to work hard on the intensity and precision frontiers
- Charged leptons offer an important spectrum of possibilities:
 - We show how CLFV decays offer an excellent model discriminating tools giving indications on
 - the mediator (operator structure)
 - the source of flavour breaking (comparison $\tau \mu vs. \tau e vs. \mu e$)
 - Interplay low energy and collider physics: LFV of the Higgs boson
- Several experimental programs: MEG, Mu3e, COMET, Mu2e, Belle II, BESIII, LHCb, LHC-HL, EIC ($\tau \rightarrow e$)

5. Back-up

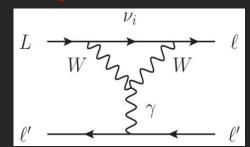
$\tau \rightarrow 3 \mu$

Boxes



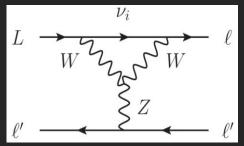
$$\sim rac{\mathcal{P}^4}{M_W^4} rac{m_{\mathcal{V}}^2}{\mathcal{P}^2} \log \left(rac{m_L^2}{M_W^2}
ight)$$

γ Penguins



$$\sim rac{\mathcal{P}^4}{M_W^4}rac{m_{
u}^2}{\mathcal{P}^2}$$

Z Penguins



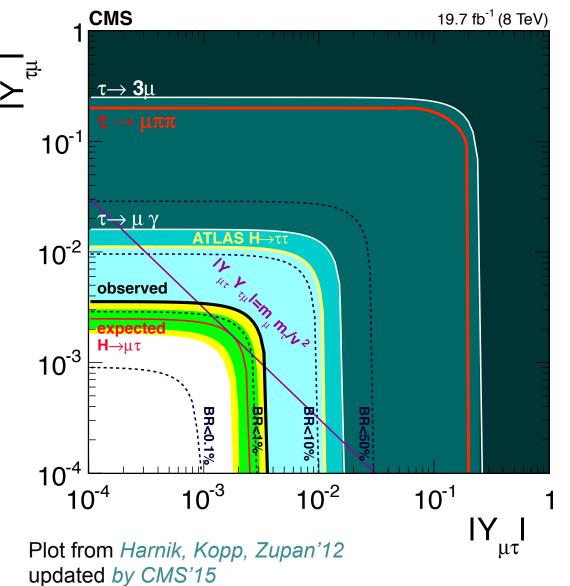
$$\sim \frac{\mathcal{P}^4}{M_W^4} \frac{m_\nu^2}{\mathcal{P}^2} \log \left(\frac{m_L^2}{M_W^2} \right)$$

$\mathbf{L} = \{\mu, \tau\}$

Logarithmic enhancement is replaced by a mild $\log\left(\frac{M_W}{m_\tau}\right) = 3.8$ or

$$\log\left(\frac{M_W}{m_u}\right) = 6.6$$

3.2 Constraints in the tu sector

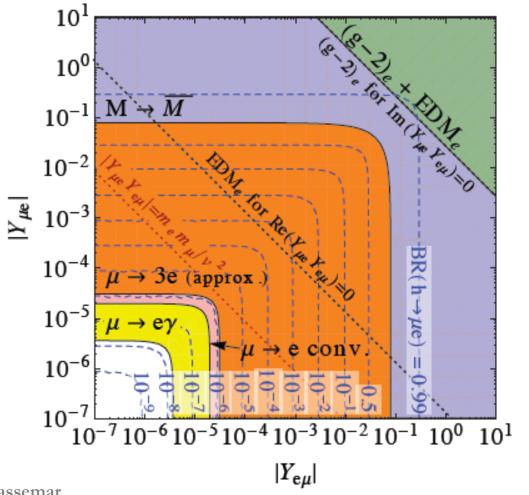


- Constraints from LE:
 - $\tau \to \mu \gamma$: best constraints but loop level \Rightarrow sensitive to UV completion of the theory
 - τ → μππ: tree level diagrams
 robust handle on LFV
- Constraints from HE:
 LHC wins for τμ!
- Opposite situation for μe!
- For LFV Higgs and nothing else: LHC bound

$$BR(\tau \to \mu \gamma) < 2.2 \times 10^{-9}$$

3.3 Constraints in the µe sector

Constraints from Higgs decay (LHC) vs. low energy LFV and LFC observables



Harnik, Kopp, Zupan'12

 Best constraints coming from low

energy:
$$\mu \rightarrow e \gamma$$

MEG'13

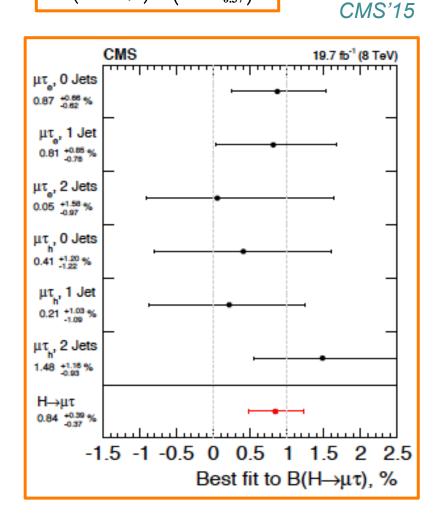
$$BR(\mu \rightarrow e\gamma) < 5.7 \ 10^{-13}$$

$$BR(h \to \mu e) < 10^{-7}$$

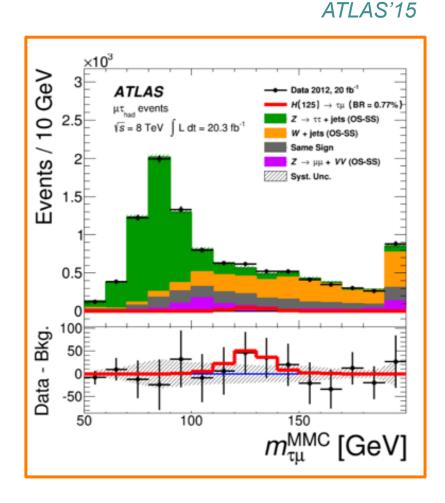
3.4 Hint of New Physics in $h \rightarrow \tau \mu$?

$$BR(h \to \tau \mu) = (0.84^{+0.39}_{-0.37})\%$$

@2.4σ

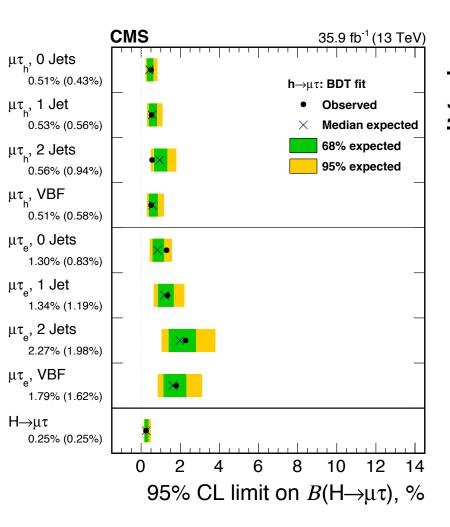


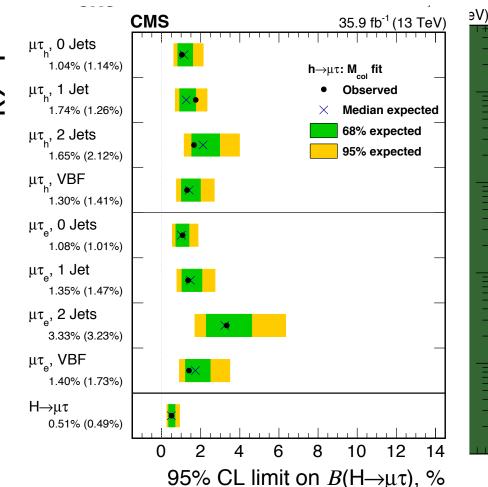
$$BR(h \to \tau \mu) = (0.53 \pm 0.51)\%$$
 @10



3.4 Hint of New Physics in $h \rightarrow \tau \mu$?

CMS'17

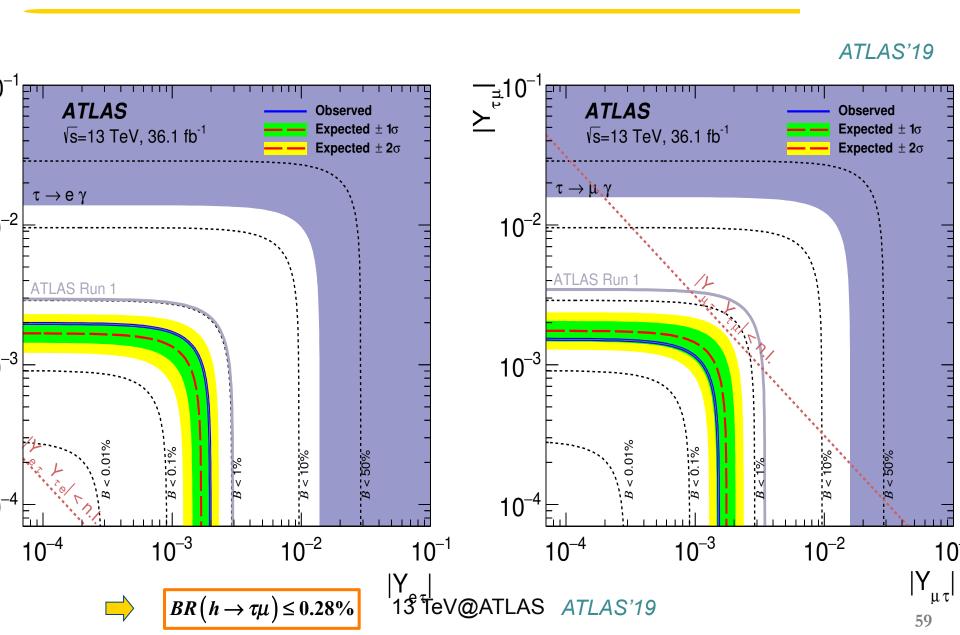




 $BR(h \to \tau \mu) = (0.25 \pm 0.25)\%$

μτ

3.4 Hint of New Physics in $h \rightarrow \tau \mu$?

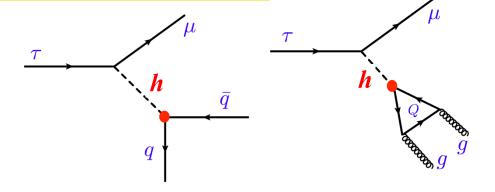


3.4 What if $\tau \to \mu(e)\pi\pi$ observed? Reinterpreting Celis, Cirigliano, E.P'14

Talk by J. Zupan

@ KEK-FF2014FALL

• $\tau \rightarrow \mu(e)\pi\pi$ sensitive to $Y_{\mu\tau}$ but also to $Y_{u,d,s}!$



- Y_{u,d,s} poorly bounded
- For Y_{u,d,s} at their SM values :

$$\overline{Br(\tau \to \mu \pi^+ \pi^-)} < 1.6 \times 10^{-11}, \overline{Br(\tau \to \mu \pi^0 \pi^0)} < 4.6 \times 10^{-12}$$

$$Br(\tau \to e \pi^+ \pi^-) < 2.3 \times 10^{-10}, Br(\tau \to e \pi^0 \pi^0) < 6.9 \times 10^{-11}$$

• But for $Y_{u,d,s}$ at their upper bound:

$$Br(\tau \to \mu \pi^+ \pi^-) < 3.0 \times 10^{-8}, Br(\tau \to \mu \pi^0 \pi^0) < 1.5 \times 10^{-8}$$

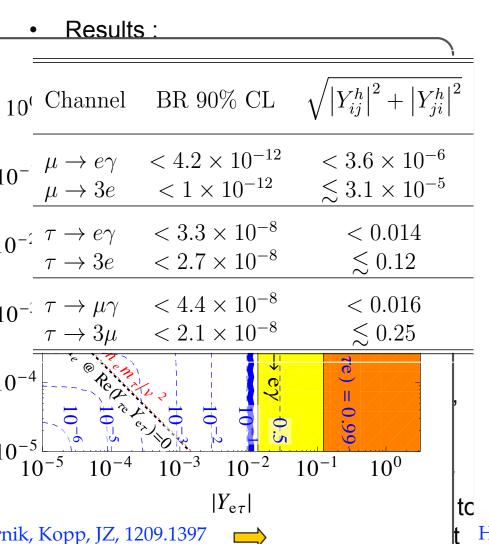
$$Br(\tau \to e \pi^+ \pi^-) < 4.3 \times 10^{-7}, Br(\tau \to e \pi^0 \pi^0) < 2.1 \times 10^{-7}$$
 Delow present experimental limits:

• If discovered \implies among other things *upper limit* on $Y_{u,d,s}$!

Interplay between high-energy and low-energy constraints!

2.4 Constraints at Low Energy

Harnik, Kopp, Zupan'12



 10^{1} 10^{0} 10^{-1} M 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6}

For µe: best constraints from LE

Harnik, Kopp Nz P12 Diagonal couplings set to the SM values

 $10^{-7}10^{-6}10^{-5}10^{-4}10^{-3}10^{-2}10^{-1}10^{0}$

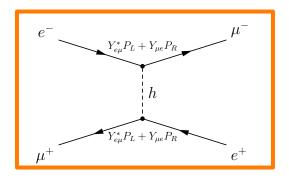
 $|Y_{e\mu}|$

10-

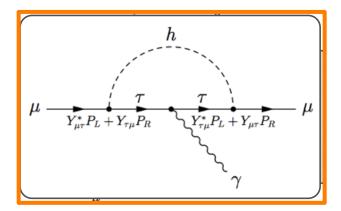
Constraints at Low Energy on LFV

Muonion-antimuonic oscillations

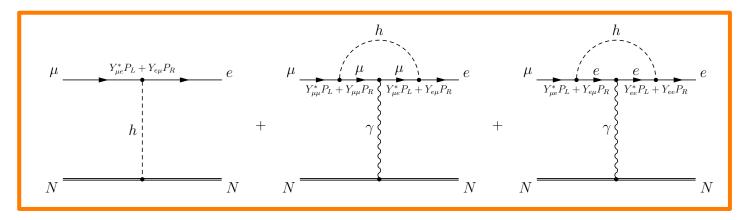
Harnik, Kopp, Zupan'12



Anomalous magnetic moment of the muon:

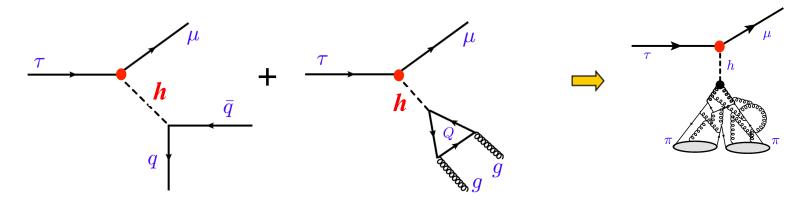


Mu to e conversion:



2.6 Constraints from $\tau \rightarrow \mu \pi \pi$

Tree level Higgs exchange



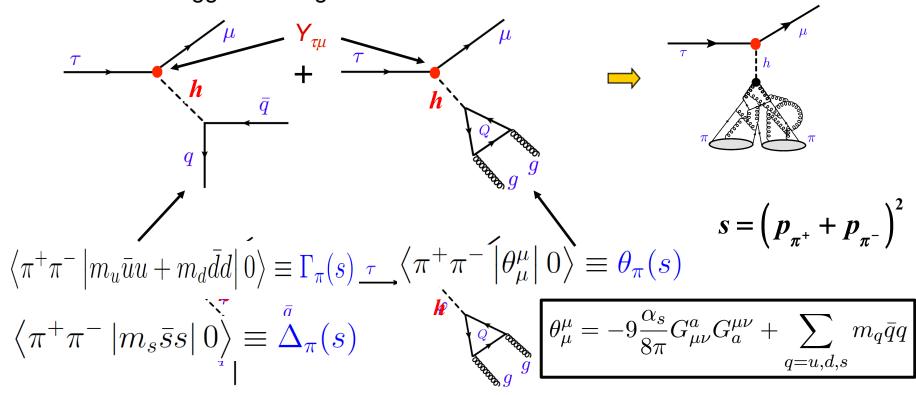
- Problem: Have the hadronic part under control, ChPT not valid at these energies!
 - Use form factors determined with dispersion relations matched at low energy to CHPT

 Daub, Dreiner, Hanart, Kubis, Meissner'13

 Celis, Cirigliano, E.P.'14
- Dispersion relations: based on unitarity, analyticity and crossing symmetry Take all rescattering effects into account $\pi\pi$ final state interactions important

2.6 Constraints from $\tau \rightarrow \mu \pi \pi$

Tree level Higgs exchange

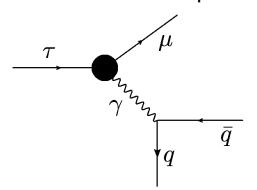


$$\frac{d\Gamma(\tau \to \mu \pi^+ \pi^-)}{d\sqrt{s}} = \frac{(m_\tau^2 - s)^2 \sqrt{s - 4m_\pi^2}}{256\pi^3 m_\tau^3} \frac{\left(|Y_{\tau\mu}^h|^2 + |Y_{\mu\tau}^h|^2\right)}{M_h^4 v^2} |\mathcal{K}_\Delta \Delta_\pi(s) + \mathcal{K}_\Gamma \Gamma_\pi(s) + \mathcal{K}_\theta \theta_\pi(s)|^2}{f\left(y_q^h\right)}$$
Emilie Passemar

64

2.6 Constraints from $\tau \rightarrow \mu \pi \pi$

Contribution from dipole diagrams



$$L_{eff} = c_L Q_{L\gamma} + c_R Q_{R\gamma} + h.c.$$

with the dim-5 EM penguin operators:

$$Q_{L\gamma,R\gamma} = \frac{e}{8\pi^2} m_\tau \left(\mu \sigma^{\alpha\beta} P_{L,R} \tau\right) F_{\alpha\beta}$$

$$\frac{d\Gamma(\tau \to \ell \pi^+ \pi^-)}{d\sqrt{s}} = \frac{\alpha^2 |F_V(s)|^2 (|c_L|^2 + |c_R|^2)}{768\pi^5 m_\tau} \frac{(s - 4m_\pi^2)^{3/2} (m_\tau^2 - s)^2 (s + 2m_\tau^2)}{s^2}$$

with the vector form factor:

$$C_{L,R} = f\left(\frac{\mathbf{Y}_{\tau\mu}}{\mathbf{I}}\right)$$

$$\langle \pi^{+}(p_{\pi^{+}})\pi^{-}(p_{\pi^{-}})|\frac{1}{2}(\bar{u}\gamma^{\alpha}u - \bar{d}\gamma^{\alpha}d)|0\rangle \equiv F_{V}(s)(p_{\pi^{+}} - p_{\pi^{-}})^{\alpha}$$

• Diagram only there in the case of $\tau^- \to \mu^- \pi^+ \pi^-$ absent for $\tau^- \to \mu^- \pi^0 \pi^0$ neutral mode more model independent

3.2 Dispersion relations: Method

Solution: Use analyticity to reconstruct the form factor in the entire space

Omnès representation :
$$F_I(s) = P_I(s) \Omega_I(s)$$

polynomial Omnès function

- Omnès function : $\Omega_{I}(s) = \exp\left[\frac{s}{\pi} \int_{s_{th}}^{\infty} \frac{ds'}{s'} \frac{\delta_{I}(s')}{s'-s-i\varepsilon}\right]$
- Polynomial: P_I(s) not known but determined from a matching to experiment or to ChPT at low energy

3.3 Determination of $F_V(s)$

- Vector form factor
 - > Precisely known from experimental measurements $e^+e^- \to \pi^+\pi^-$ and $\tau^- \to \pi^0\pi^-\nu_{\tau}$ (isospin rotation)

3.3 Determination of $F_V(s)$

- Vector form factor
 - > Precisely known from experimental measurements $e^+e^- \to \pi^+\pi^-$ and $\tau^- \to \pi^0\pi^-\nu_{\tau}$ (isospin rotation)
 - \triangleright Theoretically: Dispersive parametrization for $F_{\lor}(s)$

Guerrero, Pich'98, Pich, Portolés'08
Gomez, Roig'13

$$F_{V}(s) = \exp\left[\frac{\lambda_{V}'}{m_{\pi}^{2}} + \frac{1}{2}\left(\frac{\lambda_{V}'' - \lambda_{V}'^{2}}{m_{\pi}^{2}}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{3}} \frac{\phi_{V}(s')}{\left(s' - s - i\varepsilon\right)}\right]$$

3.3 Determination of $F_{V}(s)$

- Vector form factor
 - > Precisely known from experimental measurements $e^+e^- \to \pi^+\pi^-$ and $\tau^- \to \pi^0\pi^-\nu_{\tau}$ (isospin rotation)
 - \triangleright Theoretically: Dispersive parametrization for $F_V(s)$

Guerrero, Pich'98, Pich, Portolés'08
Gomez, Roig'13

$$F_{V}(s) = \exp\left[\frac{\lambda_{V}^{'}}{m_{\pi}^{2}} + \frac{1}{2}\left(\frac{\lambda_{V}^{"}}{\lambda_{V}^{"}} - \frac{\lambda_{V}^{'2}}{\lambda_{V}^{"}}\right)\left(\frac{s}{m_{\pi}^{2}}\right)^{2} + \frac{s^{3}}{\pi}\int_{4m_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{3}} \frac{\phi_{V}(s')}{\left(s'^{2} + s - i\varepsilon\right)}\right]$$

Extracted from a model including 3 resonances $\rho(770)$, $\rho'(1465)$ and $\rho''(1700)$ fitted to the data

> Subtraction polynomial + phase determined from a *fit* to the Belle data $\tau^- \to \pi^0 \pi^- \nu_\tau$

Determination of $F_V(s)$



Determination of $F_V(s)$ thanks to precise measurements from Belle!

3.4 Determination of the form factors : $\Gamma_{\pi}(s)$, $\Delta_{\pi}(s)$, $\theta_{\pi}(s)$

- Here no experimental data to determine the polynomial
- $\left|4m_{\pi}^2 < s < \left(m_{\tau} m_{\mu}\right)^2 \sim \left(1.77 \text{ GeV}\right)^2\right|$ two channels contribute $\pi\pi$ and $K\overline{K}$

$$\operatorname{disc} \left[\begin{array}{c} \pi \\ \pi \end{array} \right] = \begin{array}{c} \pi \\ \pi \end{array} \begin{array}{c} \pi \\ \pi \end{array}$$

Unitarity

• Coupled channel analysis up to √s~1.4 GeV: Mushkhelishvili-Omnès approach

Inputs: I=0, S-wave $\pi\pi$ and KK data

Donoghue, Gasser, Leutwyler'90

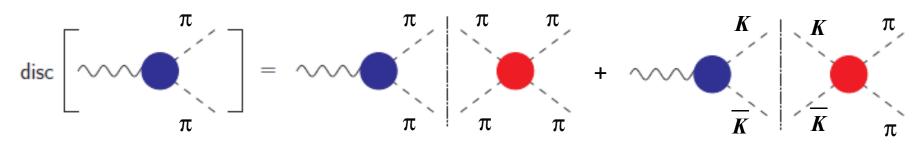
Moussallam'99

See also Osset & Oller'98

Lahde & Meissner'06

Daub, Dreiner, Hanart, Kubis, Meissner'13 Celis, Cirigliano, E.P.'14

Unitarity the discontinuity of the form factor is known



$$\operatorname{Im} F_n(s) = \sum_{m=1}^2 T_{nm}^*(s) \sigma_m(s) F_m(s)$$

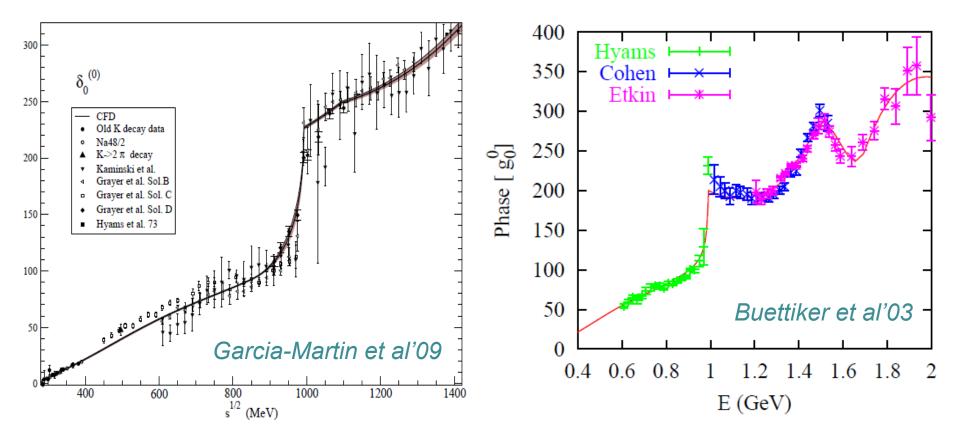
 $n=\pi\pi, K\overline{K}$

Scattering matrix:

$$\left(egin{array}{l} \pi\pi \!
ightarrow \! \pi\pi, \ \pi\pi \!
ightarrow \! K\overline{K} \ K\overline{K} \!
ightarrow \! \pi\pi, \ K\overline{K} \!
ightarrow \! K\overline{K} \end{array}
ight)$$

Inputs for the coupled channel analysis

• Inputs : $\pi\pi o \pi\pi$, $K\overline{K}$



- A large number of theoretical analyses Descotes-Genon et al'01, Kaminsky et al'01, Buettiker et al'03, Garcia-Martin et al'09, Colangelo et al.'11 and all agree
- 3 inputs: $\delta_{\pi}(s)$, $\delta_{K}(s)$, η from *B. Moussallam* \Longrightarrow reconstruct *T* matrix

73

Dispersion relations

General solution to Mushkhelishvili-Omnès problem:

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_K(s) \end{pmatrix} = \begin{pmatrix} C_1(s) & D_1(s) \\ C_2(s) & D_2(s) \end{pmatrix} \begin{pmatrix} P_F(s) \\ Q_F(s) \end{pmatrix}$$

Canonical solution falling as 1/s for large s (obey unsubtracted dispersion relations)

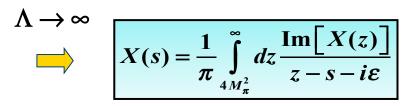
Polynomial determined from a matching to ChPT + lattice

Canonical solution X(s) = C(s), D(s):

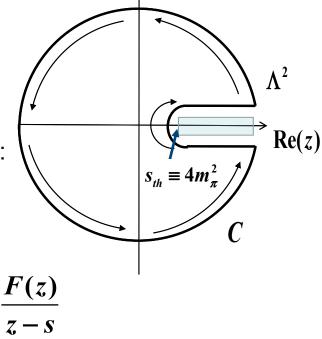
- Knowing the discontinuity of X(s) write a dispersion relation for it
- Analyticity of the FFs: X(z) is
 - real for z < s_{th}
 - has a branch cut for $z > s_{th}$
 - analytic for complex z
- Cauchy Theorem and Schwarz reflection principle:

$$X(s) = \frac{1}{\pi} \oint_C dz \frac{X(z)}{z - s}$$

$$= \frac{1}{2i\pi} \int_{s_{th}=4M_{\pi}^2}^{\Lambda^2} dz \frac{disc[F(z)]}{z - s - i\varepsilon} + \frac{1}{2i\pi} \int_{|z|=\Lambda^2} dz \frac{F(z)}{z - s}$$



X(s) can be reconstructed everywhere from the knowledge of Im X(s)



Im(z)

Dispersion relations

• General solution to *Mushkhelishvili-Omnès* problem:

$$\begin{pmatrix} F_{\pi}(s) \\ \frac{2}{\sqrt{3}}F_K(s) \end{pmatrix} = \begin{pmatrix} C_1(s) & D_1(s) \\ C_2(s) & D_2(s) \end{pmatrix} \begin{pmatrix} P_F(s) \\ Q_F(s) \end{pmatrix}$$

Canonical solution falling as 1/s for large s (obey unsubtracted dispersion relations)

Polynomial determined from a matching to ChPT + lattice

• Canonical solution found by solving the dispersive integral equations iteratively starting with Omnès functions X(s) = C(s), D(s)

$$\operatorname{Im} X_n^{(N+1)}(s) = \sum_{m=1}^2 T_{mn}^* \sigma_m(s) X_m^{(N)}(s) \longrightarrow X_n^{(N+1)}(s) = \frac{1}{\pi} \int_{4m_\pi^2}^{\infty} ds' \frac{\operatorname{Im} X_n^{(N+1)}(s')}{s'-s}$$

Fix the polynomial with requiring

$$F_p(s) \rightarrow 1/s + \text{ChPT}$$

Brodsky & Lepage'80

Feynman-Hellmann theorem:

$$\Gamma_P(0) = \left(m_u \frac{\partial}{\partial m_u} + m_d \frac{\partial}{\partial m_d}\right) M_P^2$$

$$\Delta_P(0) = \left(m_s \frac{\partial}{\partial m_s}\right) M_P^2$$

At LO in ChPT:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}})\,B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}})\,B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}})\,B_0 + O(m^2) \end{aligned}$$

Fix the polynomial with requiring

$$F_p(s) \rightarrow 1/s + \text{ChPT}$$
:

Brodsky & Lepage'80

Feynman-Hellmann theorem:

$$\Gamma_P(0) = \left(m_u \frac{\partial}{\partial m_u} + m_d \frac{\partial}{\partial m_d}\right) M_P^2$$

$$\Delta_P(0) = \left(m_s \frac{\partial}{\partial m_s}\right) M_P^2$$

At LO in ChPT:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}})\,B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}})\,B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}})\,B_0 + O(m^2) \end{aligned}$$

• At LO in ChPT:
$$P_{\Gamma}(s) = \Gamma_{\pi}(0) = M_{\pi}^2 + \cdots$$

$$P_{\Gamma}(s) = (m_{\text{U}} + m_{\text{d}}) B_0 + O(m^2)$$

$$P_{\Gamma}(s) = \frac{2}{\sqrt{3}} \Gamma_K(0) = \frac{1}{\sqrt{3}} M_{\pi}^2 + \cdots$$

$$P_{\Delta}(s) = \Delta_{\pi}(0) = 0 + \cdots$$

$$P_{\Delta}(s) = \Delta_{\pi}(0) = 0 + \cdots$$

$$P_{\Delta}(s) = \frac{2}{\sqrt{3}} \Delta_K(0) = \frac{2}{\sqrt{3}} \left(M_K^2 - \frac{1}{2} M_{\pi}^2 \right) + \cdots$$

At LO in ChPT:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}})\,B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}})\,B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}})\,B_0 + O(m^2) \end{aligned}$$

For the scalar FFs:

$$P_{\Gamma}(s) = \Gamma_{\pi}(0) = M_{\pi}^{2} + \cdots$$

$$Q_{\Gamma}(s) = \frac{2}{\sqrt{3}}\Gamma_{K}(0) = \frac{1}{\sqrt{3}}M_{\pi}^{2} + \cdots$$

$$P_{\Delta}(s) = \Delta_{\pi}(0) = 0 + \cdots$$

$$Q_{\Delta}(s) = \frac{2}{\sqrt{3}}\Delta_{K}(0) = \frac{2}{\sqrt{3}}\left(M_{K}^{2} - \frac{1}{2}M_{\pi}^{2}\right) + \cdots$$

Problem: large corrections in the case of the kaons!
 Use lattice QCD to determine the SU(3) LECs

$$\Gamma_K(0) = (0.5 \pm 0.1) \ M_{\pi}^2$$
$$\Delta_K(0) = 1_{-0.05}^{+0.15} \left(M_K^2 - 1/2M_{\pi}^2 \right)$$

Daub, Dreiner, Hanart, Kubis, Meissner'13 Bernard, Descotes-Genon, Toucas'12

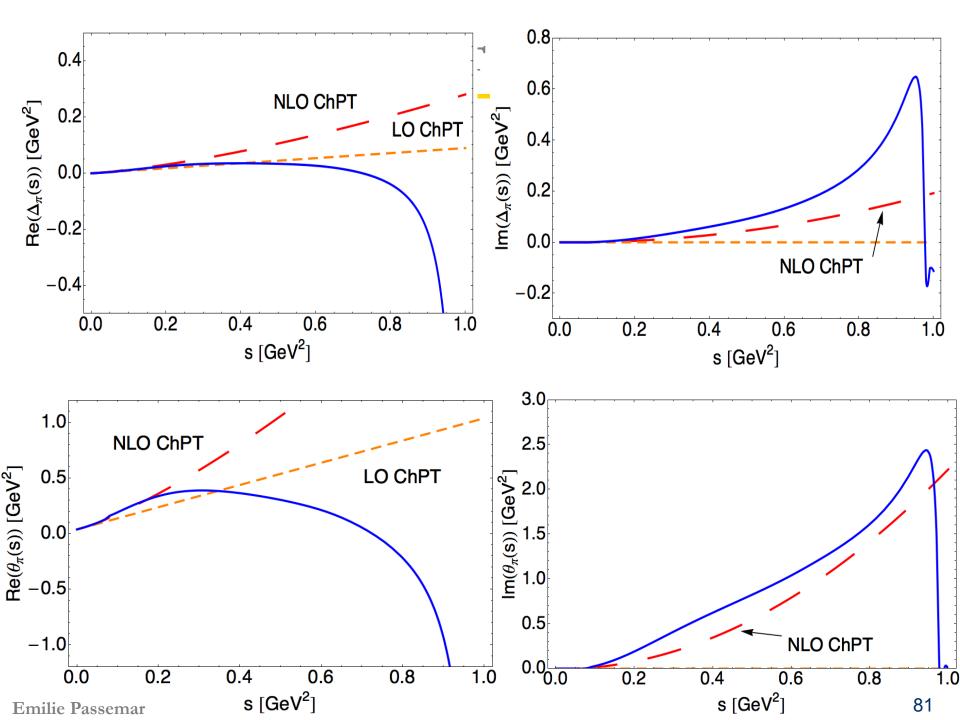
- For θ_P enforcing the asymptotic constraint is not consistent with ChPT The unsubtracted DR is not saturated by the 2 states
 - Relax the constraints and match to ChPT

$$\begin{array}{lcl} P_{\theta}(s) & = & 2M_{\pi}^2 + \left(\dot{\theta}_{\pi} - 2M_{\pi}^2 \dot{C}_1 - \frac{4M_K^2}{\sqrt{3}} \dot{D}_1\right) s \\ \\ Q_{\theta}(s) & = & \frac{4}{\sqrt{3}} M_K^2 + \frac{2}{\sqrt{3}} \left(\dot{\theta}_K - \sqrt{3} M_{\pi}^2 \dot{C}_2 - 2M_K^2 \dot{D}_2\right) s \end{array}$$

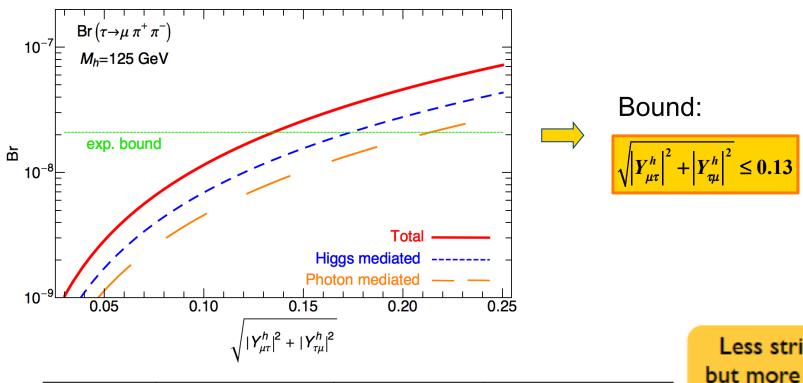
with
$$\dot{f} = \left(\frac{df}{ds}\right)_{s=0}$$

- At LO ChPT: $\dot{\theta}_{\pi,K} = 1$
- Higher orders \Longrightarrow $\dot{\theta}_{K} = 1.15 \pm 0.1$

80



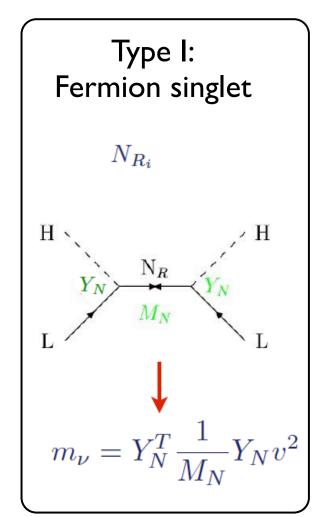
3.5 Results

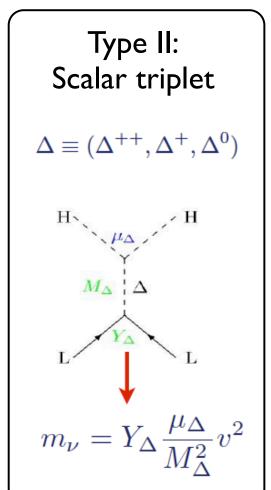


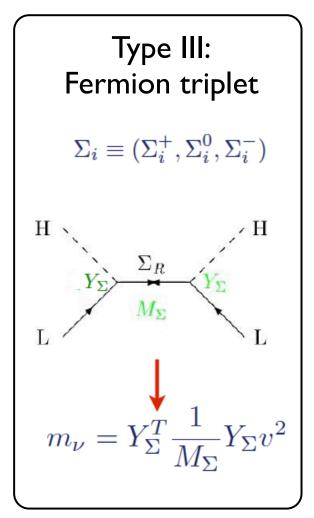
Process	$(\mathrm{BR}\times 10^8)~90\%~\mathrm{CL}$	$\sqrt{ Y^h_{\mu au} ^2+ Y^h_{ au\mu} ^2}$	Operator(s)
$\tau \rightarrow \mu \gamma$	< 4.4 [88]	< 0.016	Dipole
$\tau \rightarrow \mu \mu \mu$	< 2.1 [89]	< 0.24	Dipole
$\tau \rightarrow \mu \pi^+ \pi^-$	< 2.1 [86]	< 0.13	Scalar, Gluon, Dipole
$ au ightarrow \mu ho$	< 1.2 [85]	< 0.13	Scalar, Gluon, Dipole
$\tau \rightarrow \mu \pi^0 \pi^0$	$< 1.4 \times 10^3$ [87]	< 6.3	Scalar, Gluon

Less stringent but more robust handle on LFV Higgs couplings

CLFV in see-saw models

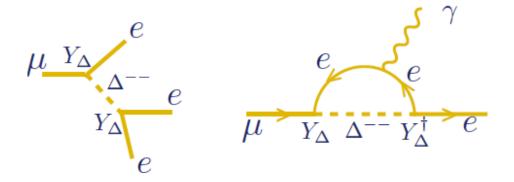






- Observable CLFV if see-saw scale low (with protection of LN)
- Each model leads to specific CLFV pattern

 CLFV in Type II seesaw: tree-level 4L operator (D,V at loop) → 4-lepton processes most sensitive



• CLFV in Type III seesaw: tree-level LFV couplings of $Z \Rightarrow \mu \rightarrow 3e$ and $\mu \rightarrow e$ conversion at tree level, $\mu \rightarrow e\gamma$ at loop

 Ratios of 2 processes with same flavor transition are fixed

$$Br(\mu \to e\gamma) = 1.3 \cdot 10^{-3} \cdot Br(\mu \to eee) = 3.1 \cdot 10^{-4} \cdot R_{Ti}^{\mu \to e}$$

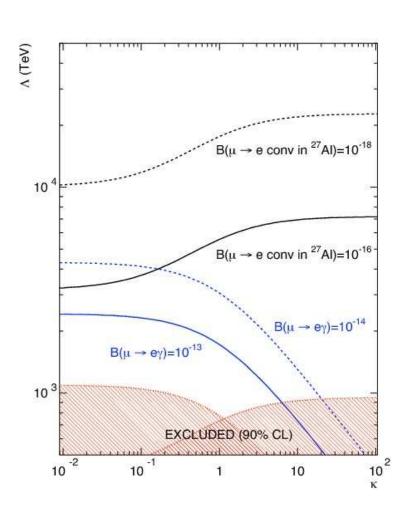
$$Br(\tau \to \mu\gamma) = 1.3 \cdot 10^{-3} \cdot Br(\tau \to \mu\mu\mu)$$

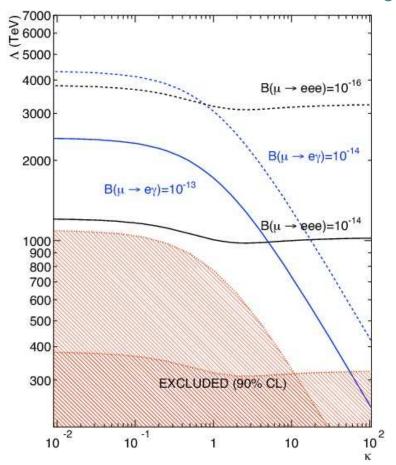
$$Br(\tau \to e\gamma) = 1.3 \cdot 10^{-3} \cdot Br(\tau \to eee)$$

2.4 Model discriminating power of muon processes

• Dependence: NP scale Λ versus ratio of two operators $\kappa = \frac{C_1}{C_2}$

DeGouvea & Vogel'13





2.5 Model discriminating power of Tau processes

Two handles:

Celis, Cirigliano, E.P.'14

> Branching ratios:
$$R_{F,M} = \frac{\Gamma(\tau \to F)}{\Gamma(\tau \to F_M)}$$
 with F_M dominant LFV mode for

model M

Spectra for > 2 bodies in the final state:

$$\frac{dBR\left(\tau \to \mu \pi^+ \pi^-\right)}{d\sqrt{s}}$$

$$\frac{dBR\left(\tau \to \mu \pi^+ \pi^-\right)}{d\sqrt{s}} \quad \text{and} \quad dR_{\pi^+ \pi^-} \equiv \frac{1}{\Gamma\left(\tau \to \mu \gamma\right)} \frac{d\Gamma\left(\tau \to \mu \pi^+ \pi^-\right)}{d\sqrt{s}}$$

Benchmarks:

➤ Dipole model: $C_D \neq 0$, $C_{else} = 0$

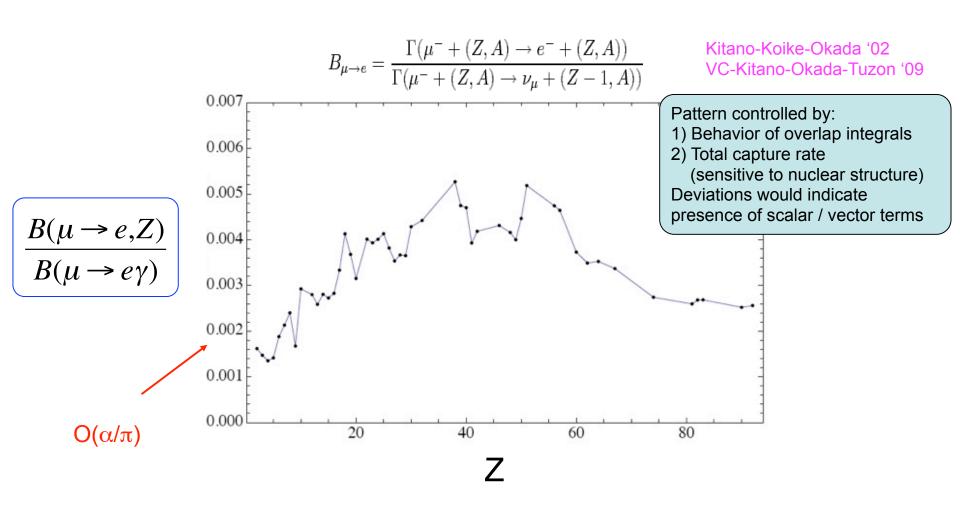
> Scalar model: $C_S \neq 0$, $C_{else} = 0$

Vector (gamma,Z) model: C_V ≠ 0, C_{else}= 0

➤ Gluonic model: $C_{GG} \neq 0$, $C_{else} = 0$

$\mu \rightarrow e vs \mu \rightarrow e \gamma$

Assume dipole dominance:



2.6.1 BR for $\mu \rightarrow$ e conversion

μ→e vs μ→eγ

 For μ →e conversion, target dependence of the amplitude is different for V,D or S models
 Cirigliano, Kitano, Okada, Tuzon'09

> $B_{\mu \to e} = \frac{\Gamma(\mu^- + (Z, A) \to e^- + (Z, A))}{\Gamma(\mu^- + (Z, A) \to \nu_\mu + (Z - 1, A))}$ Τi Pb Al - Z couples to neutrons - y couples to protons $V(\gamma)$

2.5 Model discriminating power of Tau processes

- Two handles:

$$R_{F,M} \equiv \frac{\Gamma(\tau \to F)}{\Gamma(\tau \to F_M)}$$

Celis, Cirigliano, E.P.'14

Branching ratios: $R_{F,M} = \frac{\Gamma(\tau \to F)}{\Gamma(\tau \to F_M)}$ with F_M dominant LFV mode for model M

		$\mu\pi^+\pi^-$	μho	μf_0	3μ	$\mu\gamma$
D	$R_{F,D}$	0.26×10^{-2}	0.22×10^{-2}	0.13×10^{-3}	0.22×10^{-2}	1
♣	BR	$<1.1\times10^{-10}$	$<9.7\times10^{-11}$	$<5.7\times10^{-12}$	$< 9.7 \times 10^{-11}$	$<4.4\times10^{-8}$
Bench	nmark		τ μ		τ μ μ μ	τμ

- ρ (770) resonance (J^{PC}=1⁻⁻): cut in the $\pi^+\pi^-$ invariant mass: 587 MeV $\leq \sqrt{s} \leq$ 962 MeV
- $f_0(980)$ resonance (J^{PC}=0⁺⁺): cut in the $\pi^+\pi^-$ invariant mass: 906 MeV ≤ \sqrt{s} ≤ 1065 MeV

2.5 Model discriminating power of Tau processes

Two handles:

Benchmark

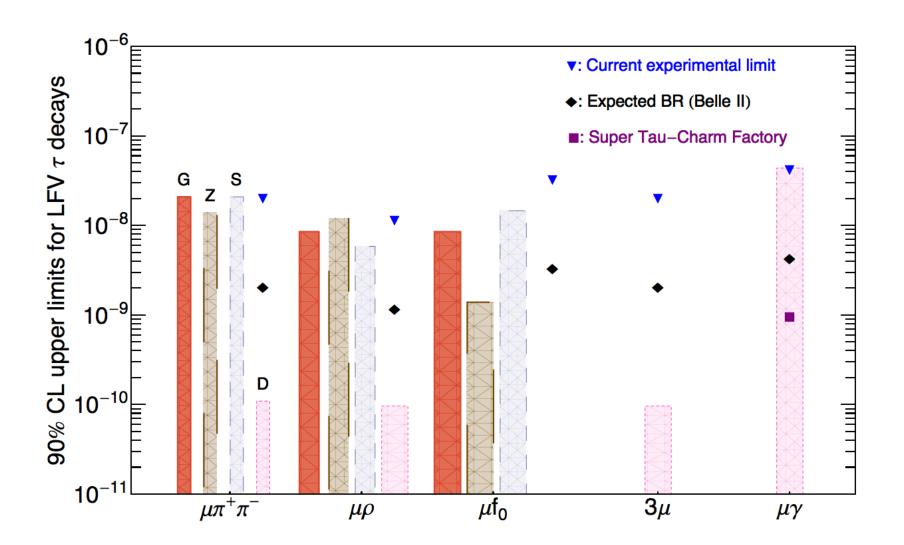
wo handles:
$$R_{F,M} = \frac{\Gamma(\tau \to F)}{\Gamma(\tau \to F_M)}$$

Celis, Cirigliano, E.P.'14

with $F_{\rm M}$ dominant LFV mode for model M

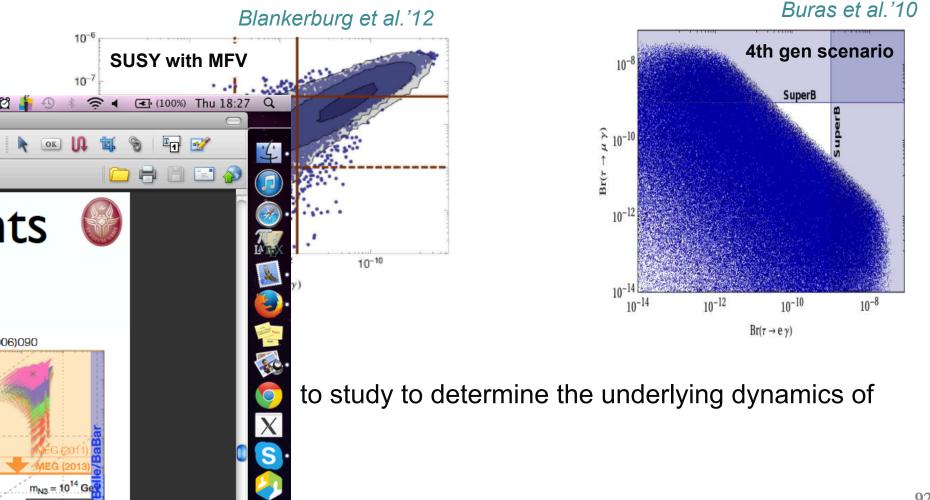
		$\mu\pi^+\pi^-$	μho	μf_0	3μ	$\mu\gamma$
D	$R_{F,D}$	0.26×10^{-2}	0.22×10^{-2}	0.13×10^{-3}	0.22×10^{-2}	1
	BR	$<1.1\times10^{-10}$	$< 9.7 \times 10^{-11}$	$<5.7\times10^{-12}$	$< 9.7 \times 10^{-11}$	$< 4.4 \times 10^{-8}$
S	$R_{F,S}$	1	0.28	0.7	-	-
5	BR	$<~2.1\times10^{-8}$	$< 5.9 \times 10^{-9}$	$< 1.47 \times 10^{-8}$	-	-
$V^{(\gamma)}$	$R_{F,V^{(\gamma)}}$	1	0.86	0.1	-	-
V (1)	BR	$<~1.4\times10^{-8}$	$< 1.2 \times 10^{-8}$	$< 1.4 \times 10^{-9}$	-	-
Z	$R_{F,Z}$	1	0.86	0.1	-	-
	BR	$<~1.4\times10^{-8}$	$< 1.2 \times 10^{-8}$	$< 1.4 \times 10^{-9}$	-	-
G	$R_{F,G}$	1	0.41	0.41	-	-
^	BR	$< 2.1 \times 10^{-8}$	$< 8.6 \times 10^{-9}$	$< 8.6 \times 10^{-9}$	-	-

4.2 Prospects:



2.5 Model discriminating power of Tau processes

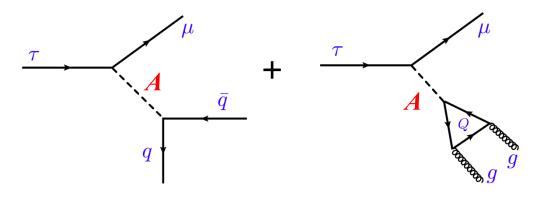
Depending on the UV model different correlations between the BRs



4. CP-odd Higgs with LFV

4.1 Constraints from $\tau \rightarrow 1P$

Tree level Higgs exchange



•
$$\boldsymbol{L}_{\boldsymbol{Y}} \Longrightarrow \boxed{\mathcal{L}_{eff}^{A} \simeq -\frac{A}{v} \left(\sum_{q=u,d,s} y_{q}^{A} \, m_{q} \, \bar{q} i \gamma_{5} \, q - \sum_{q=c,b,t} y_{q}^{A} \, \frac{\alpha_{s}}{8\pi} \, G_{\mu\nu}^{a} \, \widetilde{G}_{\mu\nu}^{a} \right)}$$

$$\widetilde{G}_{\mu\nu}^{a} = \frac{1}{2} \, \epsilon_{\mu\nu\alpha\beta} \, G_{\alpha}^{a}$$

Mediate only one pseudoscalar meson very characteristic!

4.1 Constraints from $\tau \rightarrow 1P$

Tree level Higgs exchange

> η, η'

$$\Gamma\left(\tau \to \ell \eta^{(\prime)}\right) = \frac{\bar{\beta}\left(m_{\tau}^2 - m_{\eta}^2\right) \left(|Y_{\mu\tau}^A|^2 + |Y_{\tau\mu}^A|^2\right)}{256 \pi M_A^4 v^2 m_{\tau}} \left[(y_u^A + y_d^A) h_{\eta'}^q + \sqrt{2} y_s^A h_{\eta'}^s - \sqrt{2} a_{\eta'} \sum_{q=c,b,t} y_q^A \right]^2$$

with the decay constants:

$$\langle \eta^{(\prime)}(p)|\bar{q}\,\gamma_5\,q|0\rangle = -\frac{i}{2\sqrt{2}m_q}\,h_{\eta^{(\prime)}}^q \qquad \langle \eta^{(\prime)}(p)|\bar{s}\,\gamma_5\,s|0\rangle = -\frac{i}{2m_s}\,h_{\eta^{(\prime)}}^s \langle \eta^{(\prime)}(p)|\frac{\alpha_s}{4\pi}\,G_a^{\mu\nu}\widetilde{G}_{\mu\nu}^a|0\rangle = a_{\eta^{(\prime)}}$$

4.2 Results

• $\tau \rightarrow \mu P$

Process	BR 90% CL	$M_A = 200 \text{ GeV}$	$M_A = 500 \text{ GeV}$	$M_A = 700 \text{ GeV}$
$\tau \to \mu \gamma$	$< 4.4 \times 10^{-8}$	Z < 0.018	Z < 0.040	Z < 0.055
$ au o \mu\mu\mu$	$< 2.1 \times 10^{-8}$	Z < 0.28	Z < 0.60	Z < 0.85
$(*)$ $\tau \to \mu \pi$	$< 11 \times 10^{-8}$	Z < 41	Z < 257	Z < 503
$(*)$ $\tau \to \mu \eta$	$< 6.5 \times 10^{-8}$	Z < 0.52	Z < 3.3	Z < 6.4
$(*)$ $\tau \to \mu \eta'$	$< 13 \times 10^{-8}$	Z < 1.1	Z < 7.2	Z < 14.1
$ au o \mu \pi^+ \pi^-$	$< 2.1 \times 10^{-8}$	Z < 0.25	Z < 0.54	Z < 0.75
$\tau \to \mu \rho$	$< 1.2 \times 10^{-8}$	Z < 0.20	Z < 0.44	Z < 0.62

BaBar'06'10 , Belle'10'11'13

$$\boldsymbol{Z} = \sqrt{\left|\boldsymbol{Y}_{\mu\tau}^{A}\right|^{2} + \left|\boldsymbol{Y}_{\tau\mu}^{A}\right|^{2}}$$

(*): No contribution from effective dipole operator or CP-even Higgs

N.B.: Diagonal couplings $|y_f^A| = 1$

96

4.2 Results

• $\tau \rightarrow eP$

Process	BR 90% CL	$M_A = 200 \text{ GeV}$	$M_A = 500 \text{ GeV}$	$M_A = 700 \text{ GeV}$
$\tau \to e \gamma$	$< 3.3 \times 10^{8}$	Z < 0.016	Z < 0.034	Z < 0.05
$\tau \to eee$	$< 2.7 \times 10^8$	Z < 0.14	Z < 0.30	Z < 0.42
$(*)$ $\tau \to e\pi$	$< 8 \times 10^{8}$	Z < 35	Z < 219	Z < 430
$(*)$ $\tau \to e\eta$	$< 9.2 \times 10^{8}$	Z < 0.6	Z < 3.9	Z < 7.6
$(*)$ $\tau \to e\eta'$	$< 16 \times 10^{8}$	Z < 1.3	Z < 8	Z < 15.6
$ au o e \pi^+ \pi^-$	$< 2.3 \times 10^8$	Z < 0.26	Z < 0.56	Z < 0.80
$\tau \to e\rho$	$< 1.8 \times 10^8$	Z < 0.25	Z < 0.54	Z < 0.76

BaBar'06'10 , Belle'10'11'13

$$Z = \sqrt{\left|Y_{e\tau}^{A}\right|^{2} + \left|Y_{\tau e}^{A}\right|^{2}}$$

(*): No contribution from effective dipole operator or CP-even Higgs

N.B.: Diagonal couplings $|y_f^A| = 1$

see also e.g., Assamagan, Deandrea, Delsart'03
Davidson & Verdier'12
Arana-Catania, Arganda, Herrero'14

• Decay width :
$$\Gamma(A \to \tau^+ \mu^- + \tau^- \mu^+) \equiv \Gamma(A \to \tau \mu) = \frac{M_A \left(|Y_{\tau \mu}^A|^2 + |Y_{\mu \tau}^A|^2 \right)}{8\pi}$$

Assumption : only SM channels $(A \rightarrow gg, b\overline{b}, c\overline{c}, \tau\tau...)$ are important

Large BR for
 ¹ → τμ can be expected since A does not couple to WW, ZZ at tree level. Results:

