The J-PARC muon g-2/EDM experiment

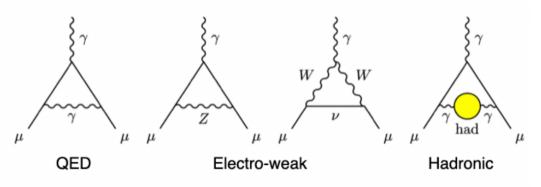
Shusei Kamioka

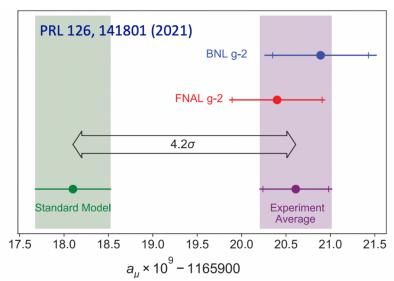
KEK

On behalf of the J-PARC muon g-2/EDM collaboration

Muon g-2/EDM

✓ Muon anomalous magnetic moment (a_{μ}) : Deviation of g_{μ} from "2"

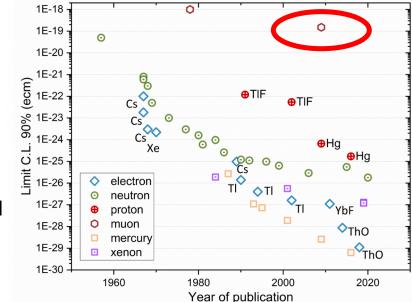

•
$$\mu = g \frac{e}{2m} s$$
, $a_{\mu} = \frac{g-2}{2}$


- Precisely calculated in the SM → Good Probe for new physics
- 4.2σ discrepancy between the SM calculation and measurements.

Verification of this discrepancy from both theoretical &

experimental side is important

Feynman diagrams related to g-2



Muon g-2/EDM

✓ Muon electric dipole moment:

- Can be measured in parallel with g-2
- $d = \eta \frac{e}{2mc} s$
- \rightarrow d = 2 \times 10⁻³⁸ e · cm (SM prediction)
- Large EDM indicates T violation = CP violation the lepton sector.
- $d < 1.8 \times 10^{-19}$ e•cm (90% C.L.) History of direct limit of EDM (arxiv: 2102.08838)

Experimental limit of muon EDM is relatively worse than other EDMs

Experimental method of g-2/EDM measurement

• Determined from muon spin precession frequency in magnetic field

$$\vec{\omega} = \vec{\omega}_a + \vec{\omega}_\eta$$

$$= -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

- > Time dependent spin direction is measured from the decay e+
- **≥** 2nd term ∝ E-field is unwanted term to be eliminated

In the previous and current experiments...

E≠0 for storage.

Magic gamma (p = 3GeV) for elimination of 2nd term.

→ "magic gamma approach"

p= 3.09 GeV/c , B=1.45 T

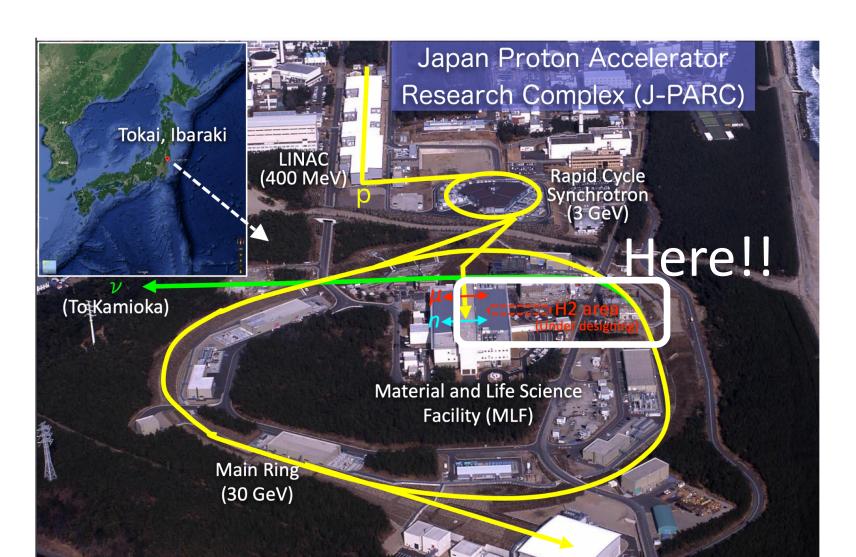
Another approach

• The elimination of the 2nd term can be also realized by no E-field condition.

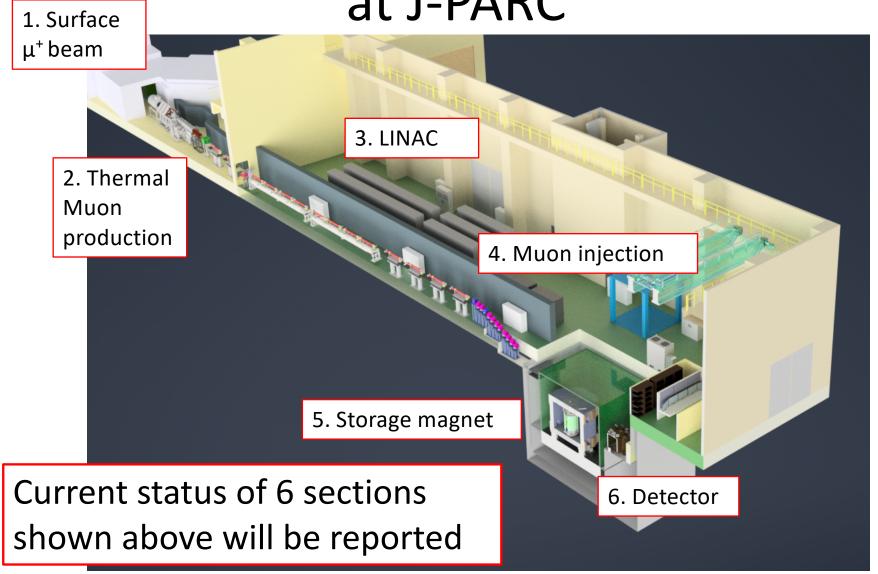
$$\vec{\omega} = \vec{\omega}_a + \vec{\omega}_{\eta}$$

$$= -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

> Even when eliminated, non-zero E-field results in the major collection or systematic uncertainty in magic gamma approach.

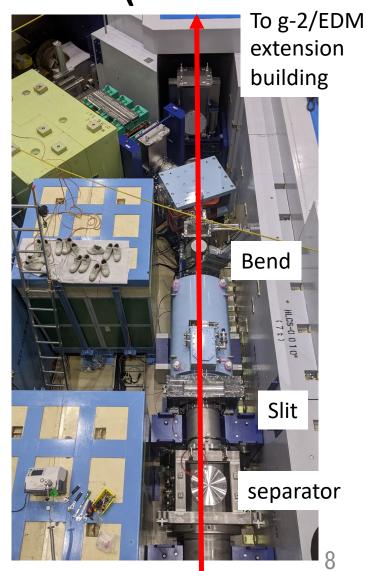

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)	• • •	56
C_e	489	53
C	180	13

➤ With zero E-field, an independent measurement with completely different systematic becomes possible!!

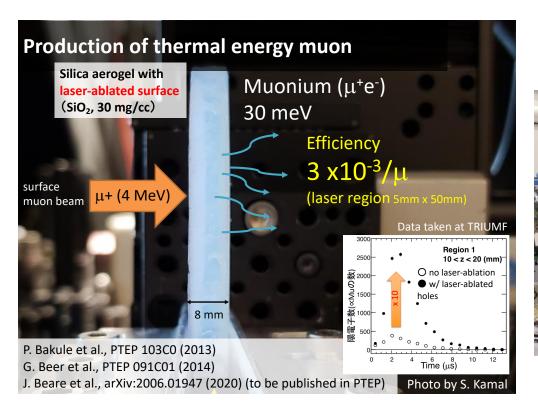

Key technique: Creation & reacceleration of thermal muon

- μ^+ beam from decay of π has large emittance \rightarrow E field is required.
- > Thermal muon is created by laser ionization of muonium & reaccelerated to produce the low emittance muon beam.
- ➤ Low emittance → Enables no F New Experiment featuring zero E-field measurement is ongoing Sui @ J-PARC Δp Also featuring compact storage magnet, full tracking detector rage **SOA Thermal** Muonium

Japan Proton Accelerator Research Complex (J-PARC)



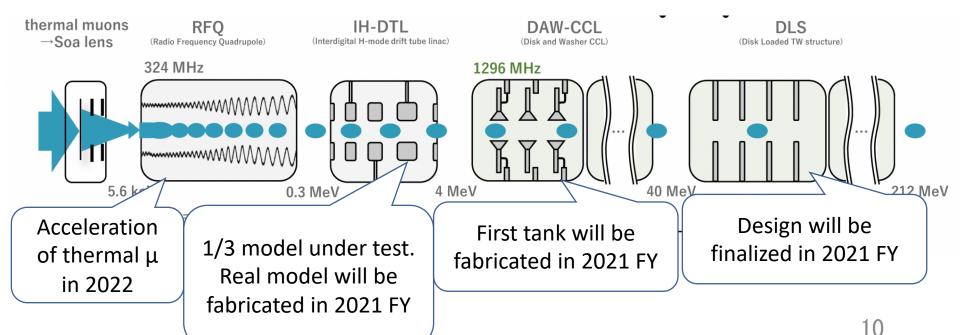
Muon g-2/EDM experiment at J-PARC


1. Surface μ⁺ beam line (H-Line)

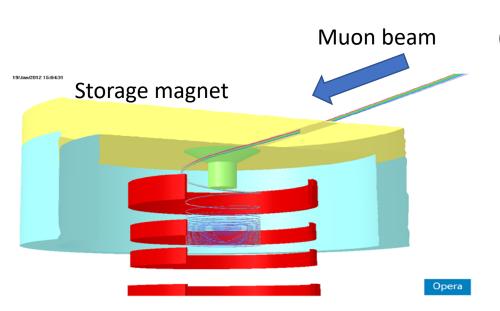
- A new beam line is being constructed
- Surface muon beam
 - decayed from π^+ stopped near the surface of the target
 - 100% polarized, monochromatic
- \triangleright Pulsed, **4MeV**, **10**⁸ μ ⁺/s with **25Hz rep**.
- Commissioning from next year.
- ➤ Extension building for g-2 experiment is being ready for construction

2. Thermal muon production

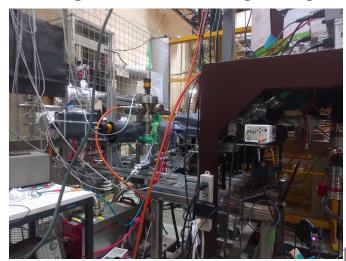
- Design of muonium emission target & development of ionization laser
- \triangleright Emission target: novel laser ablated silica aerogel \rightarrow Eff \sim 3 \times 10⁻³
- Dedicated study of ionization will start from Jun. 2022 at another beam line with the collaboration of Mu spectroscopy experiment.



Set up for muonium spectroscopy experiment

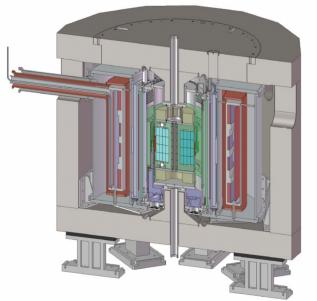

3. LINAC (Muon acceleration)

- Acceleration of the thermal muons suppressing the emittance growth. (~30meV → 200MeV)
- Demonstration of world first RF acceleration of μ in Mu was succeeded in 2018
- > Fabrication & design of each component is ongoing



4. Muon injection

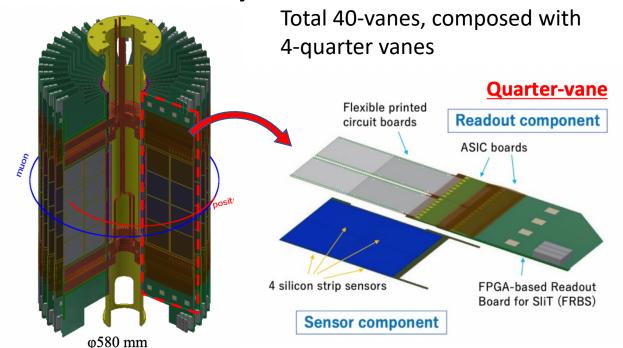
- New 3D spiral injection scheme is being developed for the injection of μ beam to the storage magnet from LINAC
 - ➤ enables injection of muon to smaller muon orbit (66cm ←> 14m)
 - ➤ High (~90%) efficiency
- Dedicated simulation & first demonstration of the scheme with electrons → To be performed in this Autumn



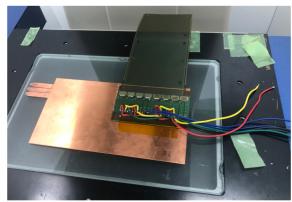
Test bench for 3D injection with electron (electron-gun, kicker, storage magnet)

5. Muon storage magnet

- Utilize small MRI-type solenoid magnet (3T, ϕ = 66cm << 14m)
- \triangleright Better field uniformity is expected ($\triangle B$ (local) < 0.2 ppm)
- Shimming studies in collaboration with Mu-hyperfine spectroscopy experiment: <0.2ppm @ 1.2T is established
- 2. Development of NMR probe & field mapping system

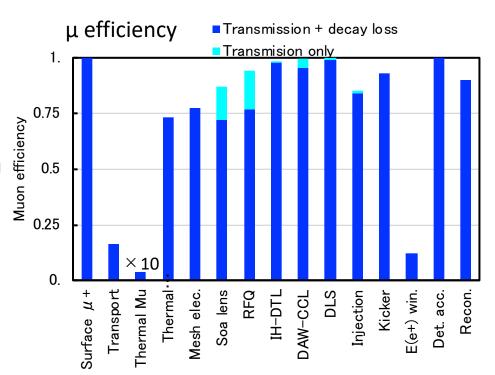


Solenoid magnet for Mu-hyperfine spectroscopy experiment



6. Positron tracking detector

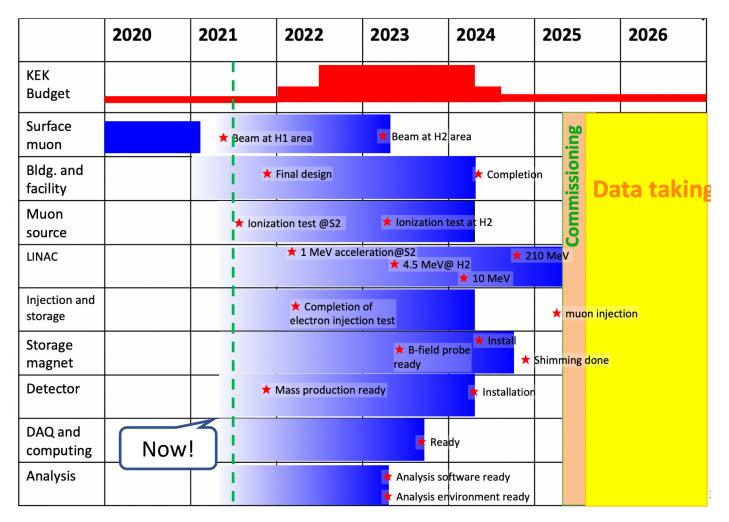
- Direction of spin is measured from momentum vector of decay e⁺
 - Detection of e⁺ (100MeV < E < 300MeV), reconstruction of p vector, stability over rate change (1.4MHz ~ 14kHz) are required
- New Silicon strip detector is being developed
- ✓ Test assembly & cooling test is ongoing → Mass production will start from next year.



Preparation of cooling test of Quarter-vane

Expected sensitivity

- Total μ^+ efficiency: 1.3 \times 10⁻⁴
- Assuming 1MW proton beam + 2 year data taking
 - → g-2: reach the BNL precision (450 ppb)
 - > **EDM**: 1/100 times better sensitivity


Our systematic goal of g-2 measurement

Anomalous spin precession (ω_a)		Magnetic field (ω_p)	
Source	Estimation (ppb)	Source	Estimation (ppb)
Timing shift	< 36	Absolute calibration	25
Pitch effect	13	Calibration of mapping probe	20
Electric field	10	Position of mapping probe	45
Delayed positrons	0.8	Field decay	< 10
Diffential decay	1.5	Eddy current from kicker	0.1
Quadratic sum	< 40	Quadratic sum	56

Systematic uncertainties will be much smaller than statistical ones.

Intended schedule and milestone

> Start data taking in FY2025.

Summary

- J-PARC E34 experiment intends to measure the muon g-2 and EDM with a new experimental approach.
- ➤ Different experimental approach from that of the BNL/FNAL experiments.
 - Small-emittance muon beam with no strong focusing
 - MRI-type storage ring with high uniform B-field
 - Full-tracking silicon strip detector
- Experiment is getting ready for realization.
- ➤ The development and construction is in progress to start data taking in FY2025.
- ✓ Intending to reach the BNL precision in ~2-year running.