

$K^+ \rightarrow \pi^+ v \overline{v}$ measurement with the NA62 experiment at CERN

Speaker: <u>Radoslav Marchevski</u> On behalf of the NA62 collaboration HQL 13th–17th September 2021, Coventry, United Kingdom

- **FCNC** loop processes: $s \rightarrow d$ coupling and highest CKM suppression
- Theoretically clean: Short distance contribution
- Hadronic matrix element measured with K₁₃ decays (per mill precision)
- SM predictions: Buras. et. al., JHEP11(2015)033

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (0.84 \pm 0.03) \times 10^{-10} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (0.84 \pm 0.10) \times 10^{-10}$$
$$BR(K_L \to \pi^0 \nu \overline{\nu}) = (0.34 \pm 0.05) \times 10^{-10} \left(\frac{|V_{ub}|}{0.00388}\right)^2 \left(\frac{|V_{cb}|}{0.0407}\right)^2 \left(\frac{\sin \gamma}{\sin 73.2^\circ}\right)^2 = (0.34 \pm 0.06) \times 10^{-10}$$

$K \rightarrow \pi v \overline{v}$ beyond the Standard Model

- Custodial Randall-Sundrum [Blanke, Buras, Duling, Gemmler, Gori, JHEP 0903 (2009) 108]
- MSSM analyses [Blazek, Matak, Int.J.Mod.Phys. A29 (2014) no.27],[Isidori et al. JHEP 0608 (2006) 064]
- Simplified Z, Z' models [Buras, Buttazzo,Knegjens, JHEP11(2015)166]
- Littlest Higgs with T-parity [Blanke, Buras, Recksiegel, Eur.Phys.J. C76 (2016) 182]
- **LFU violation models** [Isidori et al., Eur. Phys. J. C (2017) 77: 618]
- Leptoquarks [S. Fajfer, N. Košnik, L. Vale Silva, arXiv:1802.00786v1 (2018)]
- MFV analyses [S. Descotes-Genon, S.Fajfer et. al., PLB 80 (2020) 135769]
- Constraints from existing measurements (correlations model dependent)

LFU violation

 $K^+ \rightarrow \pi^+ v \overline{v}$ measurement with the NA62 experiment at CERN (R. Marchevski)

State-of-the-art K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ experiments

- Past experiments (E787/E949 @ BNL)
 - ★ Kaon decay-at-rest technique $BR(K^+ \to \pi^+ \nu \overline{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

Phys. Rev. D 79, 092004 (2009) Phys. Rev. D 77, 052003 (2008)

- Present state-of-the-art K+→π+vv experiments
 - ★ Kaon decay-in-flight technique
 - ★ NA62 experiment (this talk)

Run 1 statistics

1.9 x 10¹² proton per spill on target

~ 2.2 x 10¹⁸ POT collected in Run 1

NA62 detector

- Upstream detectors (K⁺):
- ★ KTAG: Differential Cherenkov counter for K⁺ ID
- ★ GTK: Si pixel beam tracker
- CHANTI: Anti-counter for
 inelastic beam-GTK3 interactions

- Decay Region detectors (π^+) :
- **STRAW:** track momentum spectrometer
- **CHOD:** Scintillator hodoscopes
- ★ LKr/MUV1/MUV2 : Calorimetric system
- **RICH:** Cherenkov counter for $\pi/\mu/e$ ID
- ★ LAV/SAC/IRC: Photon veto detectors
- * MUV3: Muon veto

Analysis strategy

Decay-in-flight

technique

 P_{K} $P_{\pi K}$ P_{μ}

 $m_{miss}^2 = (P_K - P_{\pi^+})^2$

 π^{+} mass assumed for the track

- Muon suppression: > 10⁷
- **a** π^0 suppression (from K+ $\rightarrow \pi^+\pi^0$): > 10⁷
- Excellent time resolution: O(100ps)
- Kinematic suppression: ~ O(10⁴)

Analysis strategy

Analysis improvements in 2018

- ★ Analysis performed in 7 separate categories
- ★ Category definition depends on hardware configurations (S1 and S2) and momentum
- ★ Selection optimized separately for each category
- ★ Improved signal efficiency with respect to the 2017 analysis
- ★ Particle identification and upstream background rejection using MVA

Reminder: 2016 and 2017 data results

- 1 events observed
- Br(K⁺ $\rightarrow \pi^+ \nu \nu$) < 14x10⁻¹⁰ @ 90% CL Phys. Lett. B 791 (2019) 156-166
- 2 events observed
- Br(K⁺ $\rightarrow \pi^+ \nu \nu$) < 1.78x10⁻¹⁰ @ 90% CL JHEP 11 (2020) 042

2018 data after signal selection

Single Event Sensitivity

	Error budget S.E.S.
Trigger efficiency	5%
MC acceptance	3.5%
Random Veto	2%
Background(normalization)	0.7%
Instantaneous intensity	0.7%
Total	6.5%

- $K^+ \rightarrow \pi^+ \pi^0$ decay used for normalization
- Cancellation of systematic effects (PID, Detector efficiencies, kaon ID and beamrelated acceptance loss)

 $S.E.S. = (1.11 \pm 0.07_{syst.}) \times 10^{-11}$

Background from kaon decays

Upstream background

Data driven background estimation

Total expected background

	2018 data
Expected SM signal	$7.58(40)_{syst}(75)_{ext}$
$K^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0}(\gamma)$	0.75(5)
$K^{+} \longrightarrow \mu^{+} \nu(\gamma)$	0.64(9)
$K^{+} \longrightarrow \pi^{+}\pi^{-}e^{+}\nu$	0.51(10)
$K^{+} \longrightarrow \pi^{+}\pi^{+}\pi^{-}$	0.22(8)
$K^{\scriptscriptstyle +} \longrightarrow \pi^{\scriptscriptstyle +} \gamma \gamma$	< 0.01
$K^{\scriptscriptstyle +} \longrightarrow \pi^0 l^{\scriptscriptstyle +} \nu$	< 0.001
Upstream	$3.30^{+0.98}_{-0.73}$
Total background	5.42 ^{+0.99} -0.75

 Background expectations validated in control regions using a blind procedure

HQL 2021

Control regions: $K^+ \rightarrow \pi^+ \pi^0$, $\mu^+ \nu_{\mu}$ and $\pi^+ \pi^+ \pi^-$

Control regions: $K^+ \rightarrow \pi^+ \pi^- e^+ v_{e}$ and upstream

Data samples defined by inverting signal selection criteria

■ The sensitivity of some control samples comparable to the S.E.S.

Opening the box in the 2018 data

5.4 background + 7.6 SM signal events expected, 17 events observed

Results

- Maximum likelihood fit using signal and background expectation in each category
- Two samples with different hardware configurations in 2018
 - ★ 2018_S1 ~ 20% of the 2018 dataset, integrated over momentum
 - \cancel{R} 2018_S2 ~ 80% of the 2018 dataset, 5 GeV/c wide bins from 15-45 GeV/c
 - * 2016 and 2017 datasets, integrated over momentum added as separate categories

Results

■ NA62 Run1(2016 + 2017 + 2018) result [JHEP 06 (2021) 093]: * $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4stat.} \pm 0.9_{syst.}) \times 10^{-11} (3.4\sigma \text{ significance})$

$K^+ \rightarrow \pi^+ vv$ decay: Historical context

$K^+ \rightarrow \pi^+ vv$ decay: Historical context

Grossman-Nir limit

Search for $K^+ \rightarrow \pi^+ X$ (invisible)

- Search for X particle production in $K^+ \rightarrow \pi^+ X$ decays
- Technique: peak searching using the m_{2miss}^2 observable for m_X in the 0-260 MeV/c² range
- Background shapes taken from the K⁺→ $\pi^+\nu\nu$ analysis including the shape of the SM K⁺→ $\pi^+\nu\nu$ process itself
- 90% Upper limits on BR(K+→π+X) in (10-11 10-10) range [JHEP 06 (2021) 093]

Search for $K^+ \rightarrow \pi^+ X$ (invisible)

Exclusion limits for a dark-sector scalar X particle mixing with the Higgs
 * BC4 model [J. Phys. G 47 (2020) 010501]

- NA62 result from the complete Run 1(2016 + 2017 + 2018)
 - ★ Observed events: 1 (2016) + 2 (2017) + 17(2018) = 20 (Run 1)
 - ★ Expected background ~ 0.2(2016) + 1.5(2017) + 5.3(2018) = 7 (Run 1)
 - ★ $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4stat.} \pm 0.9_{syst.}) \times 10^{-11} (3.4\sigma \text{ significance})$
 - \star The most precise measurement of the BR obtained so far
- The result is compatible with the SM prediction within one standard deviation
- Search for K⁺ $\rightarrow \pi^+$ X(invisible): 90% CL upper limits in the range 10⁻¹¹ 10⁻¹⁰
- NA62 Run 2 just started with important hardware improvements to further suppress background
 - Modifications of the NA62 beam line, installation of an additional beam spectrometer station and a veto counter to reduce upstream background
 - New calorimeter downstream of MUV and upstream of the beam dump to further reject background from kaon decays