

M. Needham On behalf of the LHCb collaboration

HQL2021 - The XV International Conference on Heavy Quarks and Leptons 13th – 17th September 2021 Warwick

1

Outline

The LHC is a heavy flavour factory that has led to a new Golden Age for Heavy Spectroscopy. A deluge of recent results. In this talk I focus on:

- Introduction
- Pentaquarks in $B_s \rightarrow J/\psi p\bar{p}$
- Amplitude analysis of $B^+ \to D^+ D^- K^-$
- Doubly charmed tetraquark T_{cc}^+

For more results on LHCb spectroscopy see talk by M. Stahl on Tuesday afternoon

Introduction

Studies of hadronic resonances tests predictions allow us to probe the quark model and QCD

- Map out conventional states with two or three quarks
- Look for exotic states with more than 3 quarks: tetraquarks, pentaquarks
 - Study dynamics of exotic states : diquarks, molecules

World largest heavy flavour dataset (9 fb⁻¹) collected during Run1+Run2

- Precision tracking
- Excellent PID using RICH
- Trigger for fully hadronic decays Int.J.Mod.Phys. A30 (2015) no.07, 1530022

State of the Art

- Full amplitude analyses of complex and diverse decay chains, exploiting the power of modern computing
- Coupled channel approach for states near threshold (moving beyond the simple Breit Wigner) and pole searches, e.g. for X(3872)
 - e.g for X(3872) see PRD 102, 092005
- Report information about the production environment
 - e.g event multiplicity for X(3872), PRL. 126, 092001

Pentaquarks in $B_s \rightarrow J/\psi p\bar{p}$

Recap: Pentaquarks in $\Lambda_b \rightarrow J/\psi p K^-$

2019 study of $\Lambda_b \rightarrow J/\psi p K^-$ mode with the full LHCb dataset (9 fb⁻¹) finds 3 narrow pentaquark candidates

State	M [MeV]	Γ [MeV]
$\overline{P_c(4312)^+}$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$
$P_c(4457)^+$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4\pm2.0^{+5.7}_{-1.9}$

2

The decays $B_{s,d} \rightarrow J/\psi p\bar{p}$

Observed by LHCb using data up to 2016, 5.3 fb⁻¹ (PRL.122 (2019) 191804)

- The decay $B_d \to J/\psi p\bar{p}$ is Cabbibo suppressed whilst $B_s \to J/\psi p\bar{p}$ is OZI suppressed
- Suggested as good channels to look for exotics (Pentaquarks, glueball, $f_J(2300)$) see EJPC C75 (2015) 101
- Production of $P_c(4312)^+$ kinematically allowed

The decays $B_{s,d} \rightarrow J/\psi p\bar{p}$

16

14

12

10

LHCb

9 fb⁻¹

19

 $m^2(J/\psi p)$ [GeV²]

18

- New analysis using full Run 1+2 dataset 9 fb⁻¹
- Gives a sample of $797 \pm 31 B_s \rightarrow J/\psi p\bar{p}$ decays
- First full amplitude analysis of $B_s \rightarrow J/\psi p\bar{p}$

-0.5

LHC

conservation Phase space model does not describe data well Candidates/(0.02 GeV) LHCb Candidates/(0.01 GeV 0 0 0 0 0 0 0 Candidates/(0.01 GeV 0 09 09 + Data 9 fb Total fit NR decay Background $\frac{2.2}{m(p\overline{p})} \frac{2.4}{[\text{GeV}]}$ 4.2 $\frac{2}{m(J/\psi p)} \frac{4.3}{[\text{GeV}]}$ 4.1 2 4.1Candidates/0.07 Candidates/0.07 05 05 05 Candidates/0.2 20 10

-0.5

0

0.5

 $\cos\theta_p$

0.5

 $cos\theta_{\mu}$

- Add P_c^+ and P_c^- with same mass and width (floating)
- Improves mass and helicity distribution

 $B_s \rightarrow J/\psi p\bar{p}$ amplitude analysis

 $B_s \rightarrow J/\psi p \bar{p}$ amplitude analysis

- Evidence for new pentaquark state
- Significance 3.7 σ (3.1 σ) for $J^P = \frac{1}{2} (\frac{3}{2})$

$$M_{P_c} = 4337^{+7}_{-4}(\text{stat})^{+2}_{-2}(\text{syst}) \text{ MeV}$$

 $\Gamma_{P_c} = 29^{+26}_{-12}(\text{stat})^{+14}_{-14}(\text{syst}) \text{ MeV}$

- Current dataset insufficient to determine J^P
- Fit not improved adding contributions from either $P_c(4312)^+$ or $f_J(2300)$
- No enhancement at threshold (as seen in other baryonic decays)

 $P_c^+(4312) \rightarrow J/\psi p$

arXiv: 2108.04720

Amplitude analysis of $B^+ \rightarrow D^+ D^- K^-$

$\overset{\text{\tiny HCb}}{\underset{} \longrightarrow} \text{Amplitude analysis of } B^+ \rightarrow D^+D^-K^+$

Observation of a doubly charmed tetraquark, T_{cc}^+

Doubly charmed tetraquark

LHCb has seen

- Doubly charmed baryon, Ξ_{cc}^{++} (ccu) PRL 119 (2017) 112001
- $ud\bar{c}\bar{s}$ tetraquark candidates, $X_{0,1}(2900)$ (Science Bullitin 65 (2020) 1983)
- $cc\bar{c}\bar{c}$ tetraquark candidate, X(6900) (PRD 102 (2020) 242001)

What about tetraquark with double charm content ? $cc\overline{u}\overline{d}$

For a system $QQ\bar{u}\bar{d}$, in limit $m_Q \rightarrow \infty$ system should give a bound and stable state

Likely to be true for $bb\overline{u}\overline{d}$, not clear for $cc\overline{u}\overline{d}$

Predictions for mass of $cc\overline{u}\overline{d}$ ground state (isoscalar with $J^P = 1^+$) vary within ± 250 MeV compared to DD^{*+} threshold

Selection of $D^0 D^0 \pi^+$

Use full Run 1+ Run 2 dataset

Select well identified K/π candidates displaced with high transverse momentum

Combine to make
$$D^0 \to K^- \pi^+$$
 candidates

Make $D^0 D^0 \pi^+$ candidates

Ensure no candidates are duplicates or clones

Fake D background subtracted using 2D fit to $(m_{K\pi}, m_{K\pi})$

Significant narrow peak just below DD* threshold

arXiv: 2109.01038 arXiv: 2109.01056

Mass fit for $D^0 D^0 \pi^+$

Fits made with relativistic P-wave Breit Wigner and a unitarized Breit-Wigner form that is more appropriate for a state close to threshold

$$a = \left[-(7.16 \pm 0.51) + i (1.85 \pm 0.28) \right] \text{fm}$$

Effective range

Weinberg compositness condition

-r < 11.9 (16.9) fm at 90 (95)% CLZ < 0.52 (0.58) at 90 (95)% CL

Is the T_{cc}^+ an isosinglet ?

Study also mass D^0D^0 and D^0D^+ mass distributions

Observed shape is consistent with expectations for partially reconstructed T_{cc}^+

No evidence for further narrow peaks: supports hypothesis that the the T_{cc}^+ is an isoscalar state rather than member of isotriplet

Multiplicity dependence

- Contrary to X(3872) no suppression at high multiplicity
- Dependence is surprising close to D⁰D⁰ (which is dominated by Double Parton Scattering)

Summary

- Many important LHCb results in spectroscopy over the last months
 - New pentaquark candidates in $B_s \rightarrow J/\psi p\bar{p}$ mode
 - Candidate tetraquarks with quark content $\overline{c}\overline{s}ud$ in $B^+ \rightarrow D^+D^-K^-$
 - Prompt production of a doubly charmed tetraquark (T_{cc}^{+})
- Still more to come from Run 1+2 dataset over the next couple of years
- From 2022 LHCb upgrade will increase dataset by factor 5-10 depending on mode

The LHCb Detector

 T_{cc}^{+} g-coupling

